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ABSTRACT

A new approach to the single-channel loudspeaker equalization

problem is presented. A scalar discrete-time mixed-phase precom-

pensation filter is designed to be spatially robust, meaning that

equalization performance should be insensitive to listener move-

ments within a predefined spatial region. The problem is posed in

a single-input multiple-output (SIMO) feedforward control frame-

work and a polynomial solution is derived, based on a set of room

transfer functions (RTFs) measured at a number of control points

in the region, and a multipoint mean-square error (MSE) criterion.

Spatial robustness is obtained by the introduction of two novel

strategies. Firstly, a probabilistic model is used to describe the RTF

variability around each control point, and the MSE criterion is av-

eraged with respect to this variability. Secondly, the pre-response

errors, normally associated with mixed-phase equalizer design, are

alleviated by restricting the compensator to have a certain structure.

The proposed method is shown to produce filters with excellent

time- and frequency-domain performance.

Index Terms— Loudspeaker equalization, Acoustic signal pro-

cessing, Robustness, Feedforward control, Pre-ringing

1. INTRODUCTION

In the design of single-channel loudspeaker equalization filters, spa-

tial robustness is essential if the filters are to be practically useful.

This aspect of equalizer design has been studied for many years,

and several methods for robust filter design have been proposed, see

e.g., [1–4]. A problem closely related to spatial robustness is that

of pre-response errors, or pre-ringings, which occur in mixed-phase

designs [3, 4]. In general, an unconstrained mixed-phase filter de-

sign reduces the total MSE at the price of introducing pre-response

errors, which are subjectively worse than causal, or post-response,

errors. Traditionally, excessive pre- and post-ringing problems have

been treated either by a restriction of the filter order, or by regulariza-

tion techniques [5, 6]. Pre-ringings can also be completely avoided

by restricting the filter to be minimum phase, but then the time do-

main aspect of equalization is neglected.

In [4], the equalization problem was formulated in a single-

input multiple-output (SIMO) feedforward control setting, and it

was shown that an optimal mixed-phase compensator with a very

low level of pre-ringing can be obtained, if the compensator is con-

strained to have a certain structure. However, unless the number of

measured RTFs is very large, this kind of design suffers from a lack

of spatial information, and it was concluded in [4] that some amount

of frequency response smoothing (e.g., 1/6th octave) is necessary
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when computing the inverse filter, to avoid over-fitting of the filter to

the chosen control points.

In this paper, we propose an extension of the SIMO feedfor-

ward approach. A probabilistic model called the extended design

model [7] is introduced, to capture the unmeasured RTF variability

between the control points. A robust controller is then obtained by

minimization of an averaged multipoint MSE criterion, where the

average is taken with respect to the random variables in the extended

design model. The method is finally evaluated using measured data

in a real listening environment.

Remarks on the notation: Filters and RTFs are represented

by polynomials and rational functions in the backward time-

shift operator q−1, (q−1s(k) = s(k − 1)), where q−1 corre-

sponds to z−1 in the frequency domain. A polynomial (poly-

nomial matrix) is denoted by italic capital (bold capital) letters

as P (q−1) = p0 + p1q
−1 + · · · + pnP

q−nP ( P (q−1) =
P0 + P1q

−1 + · · · + PnP
q−nP ), whereas rational matrices,

indicated by bold calligraphic letters, are represented on com-

mon denominator form as G(q−1) = Q(q−1)/P (q−1). Scalar

rational functions are denoted by normal calligraphic letters as

G(q−1). For any polynomial (polynomial matrix) we define the

conjugate as P∗(q) = P (q) = p0 + p1q + · · · + pnP
qnP

( P ∗(q) = P T (q) = P
T
0 +P

T
1 q+ · · ·+P

T
nP

qnP ). The reciprocal

P of a polynomial P is defined as P (q−1) = q−nP P∗(q) and the

identity matrix of dimension p is denoted Ip. The arguments q−1, q,

z−1, z etc. are often omitted, unless there is a risk for confusion.

2. PROBLEM DESCRIPTION

2.1. Probabilistic Modeling of RTF Variability

In the present work, we shall use a so called extended design model

to describe the assumed system behaviour throughout the listening

region, based on information provided by a set of scalar RTFs ac-

quired at p control points. This model was introduced in [7] as a

method for dealing with modeling errors in polynomial-based filter-

ing and control problems. In brief, it can be described as follows. A

multivariable rational transfer function is represented as

H(q−1) = H0(q
−1) + ∆H(q−1) (1)

where H0 represents a nominal model, and ∆H is parameterized

by zero-mean random variables and describes possible deviations

around the nominal model. As an example, consider a scalar finite

impulse response (FIR) model B(q−1):

B(q−1) = b0 + b1q
−1 = b00 + b01q

−1 + ∆b1q
−1

= B0(q
−1) + ∆B(q−1) (2)
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where b0 = b00 is perfectly known, and uncertainty about b1 is mod-

eled with a zero-mean random variable ∆b1 having variance σ2
∆b1

.

In this framework, a robust estimator or feedforward controller is

obtained by minimizing the averaged mean square error criterion

J = ĒE
n

tr
“

ε(k)εT(k)
”o

(3)

where ε(k) is a vector-valued error signal. In the criterion (3), E{·}
denotes expectation with respect to statistical properties of signals,

whereas Ē{·} represents an expectation (marginalization) with re-

spect to the random variables in ∆H, which are assumed to be in-

dependent of all involved signals. Here, this framework is applied to

the acoustic SIMO model, using the following observations:

• The first 1–2 milliseconds of a room impulse response gener-

ally contains only the direct sound from the source. This part

of the impulse is independent of the room environment, and

is also rather insensitive to receiver position.

• If the wavelength is considerably larger than the distance be-

tween the control points, then the sound pressure between the

control points can be almost linearly interpolated from the

pressure at the control points.

• At low frequencies, in particular below the Schroeder fre-

quency [8], the sound field in a room is less diffuse than at

high frequencies.

• At high frequencies, the reverberant part of the impulse re-

sponse (arriving a few milliseconds after the direct sound) is

diffuse, and varies unpredictably between the control points.

Based on these prior physical insights, a relevant extended design

model of the acoustic SIMO system can be obtained by letting the

nominal model H0 contain the direct sound and the low-frequency

parts of the RTFs, while the stochastic part ∆H models the rever-

berant, “random” high-frequency part. This partitioning of the RTFs

is accomplished by filtering out the high-frequency reverberant part

from each measured impulse response. The filtered-out reverberant

parts are then used for constructing the set of models ∆H. In more

detail, the RTF at the ith control point, denotedHi, is expressed as

Hi = H0i + ∆Hi = H0i +
∆BiB1

A1
. (4)

The coefficients of the polynomial (FIR filter) ∆Bi are assumed to

be be independent and identically distributed (i.i.d.) random vari-

ables which are normalized so that Ē{∆Bi∗∆Bi} = 1. B1/A1 is

a “shaping filter” which, to some relevant level of detail, models the

spectral envelope of the reverberant sound. We have chosen to use

a common shaping filter B1/A1 for all outputs in the SIMO model,

because we have no reason to believe that a loudspeaker’s reverber-

ant field differs significantly in a statistical sense between separate

control points. We also assume that the random parts ∆Bi are uncor-

related between different outputs, i.e., Ē{∆Bi∗∆Bj} = 0 if i 6= j.

The order of the random polynomials ∆Bi is so far unspecified.

2.2. Robust Feedforward Control With Pre-Ringing Constraint

Let the multi-point error signal of a compensated SIMO acoustical

system, with scalar input w(k), be described by

y(k) = Dw(k)−HRw(k) (5)

where H(q−1) and D(q−1) are the RTFs and the desired responses,

respectively, between the loudspeaker and p control points. H(q−1)

and D(q−1) are represented on right matrix fraction description

form [9] as

H = H0 + ∆H =

2

6

4

B01

...

B0p

3

7

5

1

A0
+

2

6

4

∆B1

...

∆Bp

3

7

5

B1

A1

= B0
1

A0
+ ∆BB1

1

A1
=(B0A1 + ∆BB1A0)

1

A0A1

= (B̂0 + ∆BB̂1)
1

A
= B/A (6)

D =

2

6

4

D1

...

Dp

3

7

5

1

E
= D/E, (7)

where B = B̂0 + ∆BB̂1, B̂0 = B0A1, B̂1 = B1A0 and

A = A0A1. Here, A and E are stable and monic polynomials,

and R is a stable compensator operating on the source signal w(k).

To obtain optimum performance without introducing pre-ringing

errors, the compensator is restricted to have the form R(q−1, q) =
q−dF∗(q)R1(q

−1), where F(q−1) = F (q−1)/F (q−1) is an as-

sumed common excess phase part of all RTFs in the region, d
is the smallest power of q−1 occurring in any of the desired re-

sponses in D(q−1), and R1(q
−1) is an arbitrary stable and causal

filter, see [4] for details. Finally we introduce the weighted er-

ror signal z1(k) = V y(k) and the weighted control effort signal

z2(k) = Wu(k), where V is a diagonal polynomial matrix of

dimension p|p, and W is a scalar polynomial. The structure of

this problem is illustrated in Fig. 1. The robust SIMO controller is

R1(q
−1) q−d

F∗(q) H0(q
−1)

∆H(q−1)

V (q−1)

D(q−1)

W (q−1)

��
��∑

- - -

-

-

6

6

?- -

6

-w(k) u(k) y(k) z1(k)

z2(k)

−

+

Fig. 1. Block diagram of the robust SIMO feedforward control prob-

lem. The thin lines represent scalar signals, and the thick lines rep-

resent vector-valued signals of dimension p.

obtained by finding the causal filterR1 that minimizes the averaged

MSE criterion

J = ĒE



tr

„»

z1

z2

–

ˆ

zT
1 zT

2

˜

«ff

= ĒE
n

tr
“

V y(k) (V y(k))T
”

+tr
“

Wu(k) (Wu(k))T
”o

. (8)

Note that in practice the compensator R must be causal, and this

can be accomplished by replacing the noncausally decaying all-pass

filter F∗(q) with an FIR approximation FFIR
∗

(q) of order d, so that

q−dFFIR
∗

(q) becomes causal. If d is chosen large enough, this ap-

proximation has negligible influence on the final result.

2.3. The Robust Optimal Controller

Using the methods developed in [10], it can be shown that the opti-

mal causal compensatorR1(q
−1) that minimizes (8) is given by

R1 =
QA

βEF
(9)
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where β(q−1) is obtained from the averaged spectral factorization

β∗β = Ē{B∗V∗VB+A∗W∗WA}

= B̂0∗V∗VB̂0+B̂1∗Ē{∆B∗V∗V∆B}B̂1+A∗W∗WA

= B̂0∗V∗VB̂0+B̂1∗tr
`

Ē{∆B∆B∗}V∗V
´

B̂1+A∗W∗WA (10)

and Q(q−1), along with a polynomial L∗(q), constitute the unique

solution to the polynomial Diophantine equation

B̂0∗V∗V DFqd = β∗Q + L∗zFE. (11)

Using (9)–(11), the total compensator R = q−dF∗R1 can be ex-

pressed on the form

R = q−dF∗

(

B̂0∗V∗V D

β∗E
Fqd

)

+

A

β
(12)

where the operator {·}+ yields the causal part of the function within

the brackets. Note that, since we here assume that the coefficients

of ∆Bi, i ∈ {1, . . . , p} are all i.i.d. random variables, we have

that Ē{∆B∆B∗} = Ip. If furthermore no frequency dependent

weighting V is applied to the error signal y(k) in (8), then also

V∗V = Ip and tr
`

Ē{∆B∆B∗}V∗V
´

= p, in which case (10)–(12)

are greatly simplified.

3. A DESIGN EXAMPLE

In this section, the above theory is applied to a practical filter design

case, using measured impulse responses in a room. We begin with

an overview of necessary structural choices and parameter settings.

3.1. Modeling Considerations

In the following example, we shall use high-order FIR models as

RTFs in H0, i.e., H0i = B0i and A0 = 1. These models are

obtained by applying a variable low-pass filter to each of the p
measured impulse responses, yielding nominal responses B0i and

their corresponding “random” reverberant parts Bri. The cutoff

frequency fC of the variable filter decreases from 22 050 Hz to

300 Hz over a time frame of 6 ms, starting at 0.8 ms after the

first peak in the impulse response. This process is illustrated in

Fig. 2. The shaping filter B1/A1, intended to model the spectral

0 2 4 6 8 10
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0.4
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fC =22050 Hz 22050 Hz≥fC≥300 Hz fC =300 Hz

Time [ms]

A
m
p
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tu
d
e

Measured impulse response

Nominal model

Fig. 2. To obtain a nominal model B0i (black line), a measured

impulse response (grey line) is low-pass filtered using a cutoff fre-

quency fC that decreases with time.

envelope of the reverberant sound, is chosen to be an FIR filter

of order 300, and thus A1 = 1. The FIR shaping filter B1 is

constructed from the reverberant parts Bri by using their average

periodogram Φav = 1
p

Pp

1 Bri∗Bri. A triangular window of length

599 is applied symmetrically over the polynomial coefficients of

Φav, yielding an averaged Blackman-Tukey spectral estimate Φ̂av of

the reverberant sound. The shaping filter B1 is finally obtained as

the minimum phase spectral factor of Φ̂av. The target dynamics Di

are here chosen to be “ideal”, i.e., pure delays, so that E = 1 and

Di = Di = q−(∆i+d), where ∆i is the acoustic propagation delay

between the loudspeaker and the ith control point and d is a common

additional delay of 8 820 samples (0.2 sec at 44 100 Hz sampling

frequency). The control effort weighting polynomial W is designed

to penalize excessive gains below 40 Hz and above 21 000 Hz. The

error signal weighting matrix is not used, i.e., V = Ip. With the

above parameterizations, the filter becomes

R(q−1, q) = q−d F ∗(q)

F∗(q)

Q(q−1)

β(q−1)F (q−1)
(13)

where β and Q are given by the spectral factorization

β∗β = B0∗B0 + pB1∗B1 + W∗W (14)

and the Diophantine equation

B0∗DFqd = β∗Q + L∗zF. (15)

The filter F∗ = F ∗/F∗ is constructed by detection of excess phase

zero clusters, as described in [4].

3.2. Experimental Conditions

In a room of dimensions 4.5 × 6 × 2.6 m and with a loudspeaker–

microphone distance of about 2.5 m, RTF measurements were per-

formed at altogether 18 control points, randomly chosen within a

volume of 35 × 35 × 35 cm. The duration of the so obtained im-

pulse responses was 0.4 seconds or 18 000 samples. Of these 18

responses, 9 were used for filter design, and 9 were saved for vali-

dation purposes. Thus p = 9, and the systems H, D, B0, ∆B, D

etc. in (6)–(7) are polynomial matrices of dimension 9|1. A causal

version of R was computed according to (13)–(15), using the FIR

approximation of F∗ as described in subsection 2.2.

3.3. Results

To graphically assess the qualities of the suggested filter design, we

shall use the following tools: 1) the average frequency response, 2)

the impulse response maximum level envelope, 3) the average en-

ergy step response below 320 Hz, and 4) the average Schroeder de-

cay sequence below 320 Hz. (Average here refers to a spatial average

over the responses, in either the design or validation points, see [4]

for further details). We begin however by examining the spectral

properties of the minimum-phase polynomial β, which greatly in-

fluences the magnitude response of the final filter R. Fig. 3 shows

the power response β∗β and its constituent parts belonging, respec-

tively, to the nominal models B0, the spectral envelope B1 of the

reverberant model, and the control signal penalty W . One can con-
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M
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Fig. 3. Frequency responses of β∗β and its components B0∗B0,

pB1∗B1 and W∗W , as given by (14).

clude from Fig. 3 that the reflection filtering above 300 Hz, together

with the statistical model ∆BB1 of the reverberant parts, clearly

has a smoothing effect on β above 300 Hz, while below 300 Hz, β
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Fig. 4. Average frequency responses of original (top) and equalized

(bottom) system. (a) Design points. (b) Validation points.

is very detailed. Below 30 Hz and above 21 kHz, β is completely

determined by W . In Fig. 4, one sees that the filter achieves a nearly

equal amount of spectral flattening in both the design and validation

points. Fig. 5 shows the maximum absolute value of 9 time-aligned

and normalized responses, clearly showing a low pre-ringing level,

as well as an improved peak-to-tail ratio, both in the design and val-

idation points. Finally, in Fig. 6, the filter is seen to considerably
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Fig. 5. Maximum level envelopes of original (grey) and equalized

(black) impulse responses. (a) Design points. (b) Validation points.

improve the time domain performance at low frequencies, by short-

ening the energy rise time of the system, or equivalently as shown in

Fig. 7, by shortening the initial energy decay. Summing up the above

assessment, the filter clearly improves the system performance ac-

cording to all of the examined properties, and the improvement is

nearly equal in both the design and validation points. Thus, the sug-

gested design is successful in obtaining filters which are spatially

robust without being overly conservative.

4. CONCLUSIONS AND FUTURE RESEARCH

A novel framework for spatially robust single-channel audio com-

pensation has been presented. Using a concept from polynomial-

based robust filtering and control, a spatially robust filter was de-

signed and evaluated, using measurements in a real room. The fil-

ter was verified to considerably improve system performance within

the chosen listening region in a spatially robust way. The proposed

framework is however open to further refinement, for example by ex-

ploiting more prior acoustical knowledge in the nominal/stochastic

partitioning of H = H0 + ∆H. Firstly, the nonstationary reflec-

tion filtering operation that was used in the design of H0 could be
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Fig. 6. Average energy step responses below 320 Hz of original sys-

tem (black) and equalized system (grey), in the design points (solid)

and in the validation points (dash-dotted lines).
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Fig. 7. Average Schroeder decay sequences below 320 Hz of origi-

nal system (black) and equalized system (grey), in the design points

(solid) and in the validation points (dash-dotted lines).

more carefully designed, and secondly, spatial dependencies (cross-

correlations) among the stochastic coefficients in ∆B could be used

in the extended design model. The probabilistic framework for RTF

modeling is also expected to be useful in acoustic MIMO applica-

tions.
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