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Abstract— This paper presents a wireless link and network
emulator for the “Wireless IP” 4G system proposal from Uppsala
University and partners. In wireless fading downlinks (base to
terminals) link-level frames are scheduled and the transmission
is adapted on a fast time scale. With fast link adaptation and
fast link level retransmission, the fading properties of wireless
links can to a large extent be counteracted at the physical
and link layers. The emulator has been used to experimentally
investigate the resulting interaction between the transport layer
and the physical/link layer in such a downlink. The paper
introduces the Wireless IP system, describes the emulator design
and implementation, and presents experimental results with TCP
in combination with various physical/link layer parameters. The
impact of link layer ARQ persistency, adaptive modulation,
prediction errors and simple scheduling are all considered.

I. INTRODUCTION

The demand for higher capacity and wider coverage of
wireless network access is increasing. As the third generation
mobile systems is becoming commercialized, research focus
has shifted towards 4G systems. One promising technology
for 4G is orthogonal frequency division multiplexing (OFDM),
which uses multiple carrier frequencies dedicated to a single
data source.

One 4G system proposal based on OFDM has been devel-
oped within the “Wireless IP” project at Uppsala University,
in cooperation with Chalmers University of Technology and
Karlstad University [1], [2]. The main focus is to cover
wide areas to service vehicular users, in excess of speeds
of 100 km/h with a 30-fold bandwidth increase compared to
UMTS/3G. To realize this goal, adaptive OFDM is used in
combination with channel prediction. Transmissions can then
be scheduled to maximize the total satisfaction of the users,
depending on their current channel quality. This is combined
with increased cross layer interaction, link level ARQ, and
other mechanisms.

The Wireless IP system is conceived as an all-IP system
intended for Internet traffic. It should be designed to provide
a good service to the network and transport layers and it is thus
important to consider the system level implications of lower
layer design decisions. In order to allow performance measure-
ments on the interaction between the physical/link layer design
and upper layers the Wireless IP emulator (WIPEMU) was

developed. In this paper we describe the design of WIPEMU
along with experimental results that illustrate the impact of
different lower layer parameter settings on transport protocol
performance.

The experimental results presented in the paper focus on
the impact of lower layer parameters on the performance of
TCP, which is the dominant transport protocol on the Internet
for reliable data transfer. The emulated scenario consists of a
mobile wireless user downloading content from a server that
is located in the fixed Internet. Parameters studied include the
impact of adaptive modulation, the effect of channel prediction
errors, the importance of link layer persistency and the impact
of scheduling using a simple algorithm. The results presented
in the paper also include an experimental validation of the
emulator design against theoretically derived values.

The remainder of the paper is organized as follows. Section
II motivates the use of emulation, describes the Wireless IP
system proposal and details the WIPEMU design. Section III
presents the experimental setup, explains the validation of the
emulator and describes the experimental results. Section IV
contains the conclusions.

II. WIPEMU

A. Emulation

Although there exist a number of previous emulators,
such as NIST Net [3], End-to-end Network Delay Emulator
(ENDE) [4], Ohio Network Emulator (ONE) [5], Delayline
[6], Dummynet [7], Seawind [8], and various trace-based
approaches [9], [10], [11], they typically model the network at
a quite high abstraction level, where the underlying network
is modeled by probability distributions for parameters like
packet loss and delays. For our purposes, this abstraction is
too coarse motivating the need for development of a new
emulator. We want, for example, to evaluate the impact of
fast link layer retransmissions, in combination with adaptive
modulation (which gives a varying throughput on a short
time scale), and user scheduling in both time and frequency.
At the same time we want to see the implications on the
system level, by running real network traffic over the emulated
link. Although not considered in this paper, investigations of



transport protocols that are designed to accept bit errors, like
UDP-Lite [12] or TCP-L [13], require that a distinction is
made between bit errors and packet loss.

WIPEMU has been developed to meet these needs. It is
intended to be plugged into a real network environment as a
gateway. This enables a wide range of transport protocol im-
plementations and applications to be tested, since the common
interface is a regular Ethernet connection. Although WIPEMU
has been specifically designed to emulate the downlink of the
Wireless IP system proposal, many of the features emulated
are part of other similar 4G systems, such as the WINNER sys-
tem [14], [15]. With appropriate reparameterization WIPEMU
could thus be modified to also emulate other 4G systems.

B. Wireless IP System Downlink Design

As mentioned in the introduction the Wireless IP system
is based on adaptive OFDM. The downlink bandwidth that
is available within a base station sector is slotted in time and
each of the slots is partitioned into a number of time-frequency
bins. These resources are shared among the active users. The
resource partitioning of the bins to different users is controlled
by a scheduler that is located in (or close to) the base station.
To support the scheduling decision, each user predicts the
signal to noise ratio (SNR) for all bins, with a prediction
horizon which is larger than the time delay of the transmission
control loop, and signals its predicted quality estimates to
the base station on an uplink control channel. Once a time-
frequency bin has been assigned, the predicted quality estimate
is used to select an appropriate modulation format for the
transmission. A high SNR enables higher modulation to be
used, and the reverse for low values of SNR. A variable link
layer frame size is used, where the payload data in a bin makes
up one link layer frame.

The bin size has been selected so that the channel appears
as relatively flat and time-invariant within each bin, allowing
all payload symbols within a bin to use the same modulation
format. Based on a design vehicle speed of 100 km/h and a
carrier frequency of 1900 MHz, the bin size has been set to
0.667 ms times 200 kHz. Using a downlink with a 5 Mhz
radio bandwidth provides 25 channels of 200 kHz and means
that 1500 times 25 frames are transmitted every second.

Each time-frequency bin carries 120 symbols1. Of the 120
symbols, 12 are for training and downlink control, leaving
108 payload symbols useful for data transfer. In the baseline
system design, an adaptive modulation system that uses 8
uncoded modulation formats, BPSK, 4-QAM, 8-QAM, 16-
QAM, 32-QAM 64-QAM, 128-QAM, and 256-QAM, is used
for the payload symbols.

C. The Emulator

To facilitate the system emulation in conjunction with real
network traffic, the emulator is installed in a gateway. In brief,

1A subcarrier spacing of 10 kHz and a symbol period of 111 µs is used.
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Fig. 1. The WIPEMU core functionality

the gateway collects IP packets destined for the “mobile node”
and passes them to the emulator software, which emulates
the transmission of the packets over the wireless link. The
packets are then forwarded to the destination. At present the
emulator only handles one user and is limited to the use of one
time-frequency bin (or channel) in each timeslot, but multi-
bin capability and real-time scheduling between users will be
implemented in the future.

After packets have been collected in the gateway, they are
placed in a queue of IP packets, see Figure 1. As packets
fill up the queue, WIPEMU dequeues one packet at a time
and decomposes it into link layer frames. For every frame,
predicted channel data is consulted to decide the current
signal-to-noise ratio (SNR). Assuming adaptive modulation,
this ratio controls which modulation level to use2. When the
frame is then “transmitted”, the non-predicted (i.e. “real”)
channel is used when calculating the probability that the frame
is received with symbol errors.

If the frame was transmitted without errors, it is stored for
later recomposition into its constituent IP packet, and the next
frame in the queue is transmitted. In the case of a transmission
error, a number of link layer retransmissions are performed3.
Retransmission takes priority over transmission of new data.
To achieve optimal use of the wireless channel, the trans-
missions are pipelined. This means that frame reordering can
occur, which may lead to packet reordering on the transport
layer. If the frame is still in error after the maximum number
of allowed retransmissions, the symbol error rate is calculated
from the channel data, and bit errors are applied. These errors
will then be contained in the re-composed IP packet, and their
presence is often detected because the network or transport
layer checksum is invalid. The recomposed IP packet is then
forwarded to its destination.

Allowing the release of erroneous IP packets (as opposed to
discarding packets with erroneous frames) enables experiments
with protocols for loss differentiation (for example Checksum-
based Loss Differentiation [16] or TCP-HACK [17]), or semi-
reliable protocols (for example TCP-L [13] or UDP-Lite [12]),
or other protocols that are able to handle packets with bit
errors.

2The emulator can also be configured to use fixed modulation.
3In the present implementation, the frame is retransmitted and received

separately, without using soft recombining/coding with the previously received
incorrect frame.



Regarding the consulted channel data, it is an array of
SNR sample values, one per bin, indicating the received
channel power. This power experiences variations in strength,
or “fading”, for vehicular users. This channel can be obtained
in a number of ways. One way is to use channel sounding
to get the measurements from a real environment. Another
way is to use ray-tracing models, for example [18]. A third
way is to use common mathematical models to simulate the
channel, such as Rayleigh or Jakes fading models. These
models produce the fast (short-term) fading characteristics.
There may also be shadow fading (also known as slow fading)
involved, which can be modelled by an additive slowly varying
contribution to the received power, on the dB-scale. Shadow
fading is often modelled as an AR(1) process with prescribed
variance. For the experiments in this paper we use a Jakes
model with added shadow fading.

With the FreeBSD Dummynet [7] system that is used in
the gateway, the fixed part of the network path can also
be emulated. It is abstracted into a packet loss ratio with a
possible delay component. With the use of dummynet pipes,
different loss ratios and delays can be combined to form
complex network scenarios.

III. EXPERIMENTAL EVALUATION

A. Experimental Setup

The use case considered in the experiments consists of a
mobile user downloading content from a server using TCP.
The user has a wireless connection to a base station, which
in turn is connected to the rest of the Internet, which also
connects the server. This scenario is shown in Figure 2.

Server Internet Base station Mobile user

WAN

Fig. 2. Logical experiment setup.

The experiment setup to implement this scenario consists
of three networked computers, as shown in Figure 3. The
first is acting as a sender or content provider, the second is
the gateway running the WIPEMU emulator, and the third is
acting as a receiver and consumes data from the sender. All
computers are also connected to an administrative network.
This is used to control the experiments, so that packet capture
in the emulated network is not affected by non experiment
related packets.

As mentioned, the experiment consists of transmitting bulk
data from the sender to the receiver. Meanwhile, all transmitted
and received packets are collected at both end-points for later
analysis.
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Fig. 3. Physical experiment setup.

Both the sender and the receiver run Linux 2.4.27 and
we use the default available TCP version. The standard TCP
settings are used except that the timestamp option is not used.
The retentive TCP caching available in Linux is turned off
to avoid creating any dependencies between the experimental
runs. A standard MTU of 1500 bytes is used.

For the wireless channel calculations, the receiver and
transmitter are assumed to have single antennas. Data for the
25 channels was obtained from a Jakes model with 12 taps
set according to typical urban fading (−5.7, −7.6, −inf ,
−4.4428, −13.4, −inf , −13.5793, −14.2371, −14.4794,
−16.9543, −20.0164, −24.3), at a speed of 75 km/h. To
account for shadow fading, an AR(1) process provided shadow
samples at an interval of 2 meter. The standard deviation, σ,
was set to 4 dB and the pole, a, at 0.74. These channels were
then processed to account for prediction errors, thus resulting
in a “real” version and a “predicted” version of each channel.
Two channels were then extracted out of the 25 channels. One
that used a static allocation scheme (i.e. the same frequency
band) and one that used a simple scheduling algorithm where
the best channel was selected in each time slot.

As described in the previous section, the predicted version
of the channel is used to choose the modulation scheme4 for
a frame, whereas the “real” version of the channel is used to
calculate the error probability of the frame in the emulated
transmission.

For the fixed part of the network, there is a set round-trip
delay of 200 ms. Although not reported in this paper, lower
delays have also been used, but the trends in the results remain.
In addition, delays are introduced by packet queuing in the
gateway (limited to 50 packets), and the transmission delay
in the wireless link layer. These last two delays will vary,
because of queue build up, and because the delay in the link
layer depends on both retransmissions and varying modulation
levels. Delays due to hand-over have not been introduced. The
link level retransmission delay was set to 2 ms, which is due
to the tight feedback loop in the Wireless IP system proposal.

Table I contains a compilation of the relevant parameters
for the wireless network, the fixed network and the protocol
settings.

4The switching levels for the adaptive modulation are optimized to provide
maximum throughput in each link layer frame [19].



Fixed network
Fixed network delay 200 ms (RTT)
Network queue size 50 packets
Wireless Downlink
Frame transmission 0.667 ms
delay
Channel model 12-tap Jakes typical urban fading model

@ 75 km/h, 16 dB SNR + AR(1) shadow
fading with variance 4 dB and pole at 0.74

Modulation Adaptive BPSK,4-256 QAM with
switching adjusted for perfect prediction
or a prediction error of NMSE 0.1 [19],
and fixed to BPSK, 4- and 8-QAM

Frame size 108 symbols
Coding Uncoded M-QAM used
Scheduling Static channel and best channel
Link ARQ 3 to 30 retransmissions
Wireless uplink
Channel model imposed bandwidth limit and delay
Packet loss 0% (lowest modulation level assumed)
Capacity 20 kbit/s
Delay 2 ms
Transport layer
parameters
Protocol TCP (Linux 2.4.27)
Transferred data 3 Mb bulk data
TCP settings Standard, except for disabled timestamp
MTU Standard, 1500 bytes
Retentive TCP Cleared before new connections
caching

TABLE I

EXPERIMENT PARAMETERS

B. Emulator Validation

A validation of the emulator has been performed to see how
the theoretical throughput and measured throughput match. A
close match indicates that the emulator functions properly and
does not drift, i.e. does not send data too slow or too fast as
compared to what it should. The evaluation has been done
by comparing the theoretically obtainable throughput to the
one observed in experiments, while compensating for protocol
overhead.

From the theoretical viewpoint, there are i bins per second,
each carrying a payload of j symbols, where every symbol
carries k bits corresponding to the log2 of the modulation
level M for the adaptive modulation system.

The theoretical maximum throughput per channel is thus

TPmax = i ∗ j ∗ log2M bits/s

In this system, i corresponds to 1500 bins/second, j corre-
sponds to 108 symbols/bin, and M to 2k, k ∈ {1, 2, ..., 8}.

The measured throughput is determined by performing
experiments with fix modulation and without packet errors.
The measured throughput is calculated with the tcptrace [20]
tool, operating on tcpdump packet captures at the receiver.
As the throughput is calculated on the application layer, the
TCP/IP header overhead must be compensated for. The last
part of the IP packet does typically not fill an entire link layer
frame, which also needs to be compensated for.

(1) (2) (3) (4) (5) (6)
bits/ theoretical measured header trunc total
sym (bits/s) (bits/s) (bits/s) (bits/s) (bits/s)

1 162000 156416 4270 1285 161971
2 324000 312832 8540 2571 323943
3 486000 460992 12585 12313 485890
4 648000 625656 17080 5142 647878
5 810000 761672 20794 27386 809852
6 972000 921984 25170 24626 971780
7 1134000 1094904 29891 8998 1133793
8 1296000 1251320 34161 10284 1295765

TABLE II

COMPARISON OF THEORETICAL AND MEASURED THROUGHPUT WHEN

USING FIXED MODULATION FORMATS, WITHOUT PACKET ERRORS

The IP packets are 1500 bytes, with a 40 byte header. The
throughput, including headers, is therefore 40/1460 = 2.73%
higher. The frame truncation depends on the link modulation
level, and is ( bits in frame - bits of data in last frame) / total
number of bits per packet. For IP packets of 1500 bytes, we
have an overhead in percent of:

108 ∗ log2 M − 1500 ∗ 8 mod (108 ∗ log2 M)
1500 ∗ 8

Table II displays the results of the discussion above. It shows
the number of bits carried in each symbol per modulation level
(1), and the theoretical maximum bits per second (2). The table
shows further the measured throughput on the application level
(3), and the throughput added by headers (4) and compensation
for truncation in the last frame (5). Comparing columns (6) and
(2) it is seen that the measured throughput with compensation
(6) and the theoretical throughput (2) match very closely, in
the order of 99.98%. A few replications were performed for
each modulation level to verify that the results were stable.

C. Results

For this paper, the impact of four physical/link layer pa-
rameters on TCP are considered: the number of link layer
retransmissions, the use of adaptive modulation, the impact of
prediction errors and the impact of channel scheduling. The
experiments were performed in the context of the experimental
setup described earlier. The experiments were repeated 30
times with channel data generated with different random seeds,
and the graphs indicate the mean values within the 95%
confidence intervals.

First we study the performance of fixed modulation to
establish the baseline performance. The question is then
how to decide which fixed modulation level to use, to get
an efficient utilization of the available radio spectrum. The
tradeoff is between performance and reliability. The higher
the modulation level, the more sensitive the transmission
becomes to interference and noise leading to transmission
errors. Consider Figure 4 which shows a transmission using
three fixed modulation schemes, for a channel with a mean
SNR of 16 dB. The y-axis shows the throughput, and the x-axis
the number of maximum allowed link layer retransmissions.
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The lowest modulation level, BPSK, obtains the same
throughput almost regardless of the amount of link layer
retransmissions. Therefore, it indicates that it may be possible
to use a higher modulation level. Increasing the modulation
level one step to 4-QAM shows that it is possible to obtain
a higher throughput, although this modulation level is more
sensitive to the interference and noise as indicated by the
need for link layer retransmissions. If the modulation level is
increased even further to 8-QAM, we are now over-utilizing
the radio resource. Even though more information is carried
in every frame, the frames experience so many transmission
errors that the retransmission mechanism cannot compensate.

Having established a baseline performance, we now proceed
to investigate the use of adaptive modulation. The modulation
level is now chosen for each link layer frame, depending on the
predicted channel quality. In this context it is thus important to
also consider the impact of prediction errors on performance.
The performance results obtained with adaptive modulation
are shown in Figure 5. We see that the best performance is
obtained if we can perfectly predict the channel (top curve).
However, in reality there is an error between the prediction and
actual signal quality. This leads to a performance degradation,
as evident by the middle curve. For this curve a prediction
error of 0.1 NMSE (normalized mean square error) was
used, representative for moderate vehicular speeds [19]. The
bottom curve shows the best fixed modulation (4-QAM) as a
reference, indicating that adaptive modulation is able to better
utilize the variations in channel quality compared to a fixed
modulation scheme5.

The curves in Figure 5 (and Figure 4) also illustrate the
importance of a persistent link layer for the performance of
reliable data transport. The number of TCP retransmissions
can be used to further illustrate the effect of varying link layer
persistency and explain the slowdown in throughput. Figure 6
shows the corresponding percentage of TCP retransmissions

5This does not consider the use of power control, which may be used to
increase the signal quality, at the cost of increased inter-cell interference.
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for the experiment discussed above (Figure 5). When there
are few allowed link layer retransmissions, this leads to TCP
packet loss, and the lost packets are then retransmitted. It is
also seen that the packet loss is not linearly proportional to
the degradation in throughput. For example, when a maximum
of 3 link layer retransmissions are used, the upper curve in
Figure 5 experiences about a 50% performance drop. However,
looking at Figure 6, this happens when there are only about
6% TCP retransmissions. The explanation is that the losses are
interpreted as congestion by TCP. As a result, TCP invokes
its congestion avoidance mechanisms which slows down the
sending rate.

The previous experiment used a static channel allocation
for transmission. We next investigate how the use of a simple
channel scheduling algorithm can further improve perfor-
mance. In this case the channel (out of 25) with the best
quality is chosen for transmission in each time slot6. The

6Note that for a multi-user scenario, more advanced scheduling algorithms
should be used to avoid starvation of users farther away from the base station.
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results for this scenario are shown in Figure 7. As before, the
upper curve shows the result for perfect prediction. The middle
curve shows the impact of introducing prediction errors. These
curves can then be compared to the bottom curve that shows
the best result from the non-scheduled channel experiment
described earlier. The results illustrate the potential benefits of
using channel scheduling compared to using a static channel
allocation scheme.

IV. CONCLUSIONS

As research on the next generation mobile and wireless
systems continues to pick up pace, it is important to have
a holistic (or system) view, while developing the underlying
technologies. This paper contributes in this field by presenting
an emulator of a 4G system downlink. This emulator enables
performance evaluations on the application and transport layer,
using real applications and transport protocols, where different
parameters on the link and physical layers can be tuned. This
paper describes the design and implementation, along with
a validation, of the WIPEMU software. Experiments were
performed to illustrate the impact of link layer retransmissions,
adaptive modulation, channel prediction errors and channel
scheduling on TCP performance. The results from these exper-
iments indicate that the performance gains promised by lower
layer techniques such as adaptive modulation and channel
scheduling can also be realized at the transport and application
layer.
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