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/ ‘Summary:l

Yr = Yi hy + vy Linear regression model

For adaptation algorithms with constant gains, including LMS,

e A novel loop transformation is used for analyzing stability and

preformance when tracking h;.
e |t simplifies the analysis for slow variations (ICASSPO01).

® New results presented here for fast variations in FIR systems with

white inputs.

e Results exact for two-tap FIR channels with white regressors with

K constant modulus (e.g. IS 136 radio channel tracking). /
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/ ‘The General Constant Gain Structure: |

Class of algorithms, for E p;¢; = R: (ICASSP 01)

& = Yt — @:Bﬂt—l
iLt+k|t = My e
LMS: My(z™h) = L1
WLMS: Mz~ 1) = Qi) R-!  (IEEE COM Dec 01, Jan 02)

Bz~ H—2-1Q1(z7 )

Design criterion for M, :

AL > ~ > A 5
Pr = tlggtht-Fkltht—kklt’ ; ht—l—k:|t = hitr _ht—l—k|t :

“Hypermodel” for A

-

h: = ’H(z‘l)et ; Eetef = R,

~
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/The algorithm, for one step predictors:

wier = ©i(yr — Qi hep—1) = (PtSO:iLﬂt—l T Pt

i’/t—|—1|t = M@ )pses

Add+subtract R;Lﬂt_li oier = R(he —

Define Zi = pip; — R . Then, ...

€t ht

iLt\t—l) + (prof — R)Bt|t—1 T Pt U¢.

: LEARNING FILTER
£1 (Z_l)

~
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‘Wiener Design of Learning Filtersl

We may design a stable transfer function matrix L£(z~1) that for a

given k estimates h;.j, by operating on a “fictitious measurement” f;:

ft = RiLt|t—1 + pier = Rhgy + 1
Bt—l—k|t = LpezHf: .
Nt
e h % f h
_t> 2 t= - t o t+k|t

;zk

Ptk

o ht+k|t
20>

Nt = Ztilt|t—1 TPtV
N——’

K “feedback noise”

“gradient noise”
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‘Analysis of Adaptation Laws with Constant Gains I

PtUt LEARNING FILTER
et hy A1)t
— H > o L >
?:7 Z_l «
Zy = o190 — R

e Feedback loop can be neglected for “slow variations”. (ICASSP01)
e |t must be taken into account for “fast variations”.

e How to quantify the feedback effects?

N /
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/ ‘The Estimation Errorl
m = Zt;bt|t—1 + prU¢
€t hi Jt iLt—l—k|t
—Hz"h R Lriz™hH >
Ptk _% Bt—i—k|t
> Zk > >

Assume e;, Uz, @y stationary and independent, H (marginally) stable...

;Lt—l—k|t — g — z_kEkR)hH;i—f’,k(cptvt) _Lk(ztﬁﬂt—l) :

7 .
~\~ -~

Y

Lag Error Noise Feedback Effects
__\/k k k k k
Pr = Yh + V‘Pg +VZB + VhZﬁ + V(,O’UZE

~

~"~

K Slow variations Cross-terms

~

/
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‘Slow Variationsl

tr (Pk,slow) —

Nt — PtUt
hy ft 1 ht+k|t
» R Lriz™) >
hitk —/L Pt k|t
> Zk 20 >
&/

tr (VF) + tr (VZZU)

etk = L1GHRR)|5 + [|Cx™ ) (rv) |

7

~

Lag error

~~

Noise-induced error

~
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Scalar FIR model with white inputs:

m = Ztﬁt|t—1 + Uy

/ ‘FIR Models with Rapid Parameter Variations 1. I \

Yt = hotus + ...+ hy—1 tUt—my1 + Ve

A Wiener LMS tracking structure which results in a finite lag error is assumed:

Approximation 2: ZtiLt|t—1 is uncorrelated with .- v, and h, V7.

h . h
A H Y R »éﬁ» L, = 9z ) 1 L=y Lrz—i tHk(L
L pz—") ou i= /L
it "
2" ~(2) !
Approximation 1:
trEZ Ztht|t 1h7_|7_ 1 — trE [Zizt] [ht|t 1h7_|7_ 1] .

\(Independence between Z; and Bt|t_1 would imply (1), but is stronger.)

(1)

/
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‘FIR Models 2: Stabilityl

Result: A finite steady state mean square parameter error exists
under the above assumptions, assuming ey, v;, ©; stationary and
independent and h; = He; (marginally) stable, if and only if

1

_1 _
R e s P
IS stable, where
A Elugl*
= M— 2
™ Bl
Ky

1

; |2 2z~ '~ 1 leads to instability.)

(A too high learning predictor power gain > ., |L

-

~

(2)

/
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/ ‘FIR Models 3: Performancel \

The k-step estimation tracking MSE for m tap FIR filters:

tr (Pk) = tr (Pk,slow) —+ tr (V];B)

May 2002

where
tr (V5;) = (& +m — 2)tr (P1)Xg  (Feedback term)
(Regressor curtosis)

In which

2 1 o,
A 1 Qrez"hH|" dz tr (Vy,) +mZs ¥,
Zk:—j{ : tI‘(Pl): U
2w JIzl=1| Be™YH | 2 1 — (kg +M—2)3,

K k-step Learning filter gain /
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/ ‘Wiener LMS Examplel \

Two-tap FIR system with white real-valued binary (B) and Gaussian (G) regressors.
h: = 2pcoswyhi_1 — p2ht_2 +e: ; w, =0.050, p=10.995.

SNR 20 dB, with |h;|? = 1. Tracking MSE for Wiener LMS adaptation laws by
theory (solid) and by simulation (>x<) Dashed curve neglects the feedback noise.

0.16

0.14}
0.12}
0.1}
&
£0.08
0.06]
0.04f

0.02

12



May 2002

/I\/I— tap FIR systems with white real-valued regressor with constant modulus:

Table 1: Contributions to the asymptotic tracking error MSE tr (P1) when FIR models of

order M are tracked by Wiener LMS. Theory (bold) compared to simulations (italics).

M: 2 4 10 20
tr (P1) 0090 .0218 .0893 .2229
0091 .0199 .0774 .2063
Lag: tr (V) 0029 .0068 .0319 .1087
Noise: tr (Vi) 0042 .0057 .0064 .0051
Feed-  tr(Vy,;) 0019 .0094 .0511 .1090
back: 0019 .0077 .0423  .0967
—tr (v, ;) 0  .0004 .0038 .0102

1
tr (vw 27) 0 .0002  .0004 .0002
in (1): 0 37%  92%  9.6%

K Error

~
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/ ‘Summary:l

Yr = Yi hy + vy Linear regression model

For adaptation algorithms with constant gains, including LMS,

e A novel loop transformation is used for analyzing stability and

preformance when tracking h;.

e |t simplifies the analysis for slow variations (ICASSPO01).

white inputs.

K constant modulus (e.g. IS 136 radio channel tracking).

® New results presented here for fast variations in FIR systems with

e Results exact for two-tap FIR channels with white regressors with

~

/
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‘Thank Youl

All details: www.signal.uu.se/Publications/abstracts/r002.html
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