ADAPTATION WITH CONSTANT GAINS: ANALYSIS FOR FAST VARIATIONS

Lars Lindbom, Mikael Sternad and Anders Ahlén

Signals and Systems, Uppsala University, PO Box 528, SE-75120, Uppsala, Sweden.
Lars.Lindbom@ks.ericsson.se, {ms,aa }@signal.uu.se

Abstract: Adaptation laws with constant gains, that adjust
parameters of linear regression models, are investigated. The
class of algorithms includes LMS as its simplest member,
while other algorithms such as Wiener LMS may improve
performance by including linear filters. Expressions in closed
form for the tracking MSE are obtained for rapidly varying
parameters of FIR systems with white inputs. This situation
may occur in e.g. the tracking of fading communication
channels. Stability and convergence in MSE are ascertained
by the stability of a transfer function, without assuming in-
dependent regressor vectors. A key technique for obtaining
these results is a transformation of these adaptation algo-
rithms into linear time-invariant filters, called learning fil-
ters, that operate in open loop for slow parameter variations.

1. INTRODUCTION

Consider discrete-time and possibly complex-valued mea-
surements generated by a linear regression
Y =pithet+uv , 1)
where y; is a scalar measured signal, v; is a noise while @}
is a regression vector, which is known at discrete time ¢.
The parameter vector hg, with known dimension M x 1, is
to be estimated.
We shall here investigate a class of linear time-invariant
estimators .
heyrie = Mr(@ D(psee) ¥))]
where M (g~ ") represents a causal rational matrix in the
the backward shift operator g=! (g7 'y = y¢-1) and where
pier = pi(ye — ‘chﬂt—l) ©)
is the negative gradient of |¢;|?/2 = |y¢ — J¢j¢—1]%/2, with
Geje-1 = ¢ i’lt]t—l being the one-step prediction of y;.
Above, ﬁt+k|t is an estimate of hy4j obtained at time ¢
by filtering (k = 0), prediction (¥ > 0) or fixed lag smooth-
ing (k < 0). Most known linear algorithms with constant
gains, related to the multi-step algorithms discussed by Ben-
veniste [1], fit into this structure [2, 4]. For the LMS algo-
rithm Ayyqpp = hyje—1 + pussipre,

Mi@H =205 T @
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Wiener methods for adjusting My(g~") have been devel-
oped in [2],[4],[5]. In this presentation, we outline an anal-
ysis of adaptation laws (2),(3) in which My(g~?) is con-
fined to be an arbitrary diagonal transfer function matrix.
Stability and the resulting estimation error

ht+k]t = hgyr — ht+k|t

is investigated for FIR systems with time-varying parame-
ters. Closed-form expressions are presented for the trace of
the steady-state parameter tracking error covariance matrix

A . . 7 T
Pk = lim Pt+k|t = lim E(ht+k|tht+k t) . (5)
t—o0 t—o0 |

We make the following basic assumptions.

Assumption 1: The noise v; is white, stationary and
zero mean with variance o2, while ¢} is stationary with zero
mean and nonsingular covariance matrix R = E (p:¢}).
Moreover, hi, v¢, and ¢} are mutually independent 0

2. THE LEARNING FILTER

The algorithm (2),(3) will now be expressed as a causal fil-
ter, denoted the learning filter Li(q™"), that operates on a
signal vector called the fictitious measurement

fi & o+ Rhyyy - Q
Since hyjp—1 = g7 Mg )(pzer), (6) gives
pree =T+ ¢ 'RM(g ) fe .

The estimator (2) can thus be expressed as

hivep = Mi@HI+¢ ‘RMi@ )7 fe
L Lua Ve =Y Lifii . Q)
=0
By (3) and (1),
Pree = PPt hye—1 + rvr ®

Adding and subtracting Rﬁm_l in (8) gives

pier = Rhy — Rimt—1 + (e} — R)hye1 + prvp . (9)
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Define

Z, (10)

amn
and denote Z; and 7; the autocorrelation matrix noise and

the gradient noise, respectively. By:inserting (9) into (6),
we now obtain

ey — R
Zihye_1 + oevy

> >

e

Rhe+m . (12)

The point of this transformation is that we have decomposed
the feedback inherent in the algorithm into two parts: An
inner time-invariant loop via R, which is absorbed into the
definition of £4(¢™") in (7); and an outer time-varying feed-
back via Z¢hy;_1, see Fig. 1, which we call the feedback
noise.

ft = Rhy + Zehysoy + ppvop =

Fig. 1. The learning filter operates on f; in which h; is the sig-
nal, while 7 plays the role of noise. The feedback loop around
L:(g™?) via the feedback noise Zgizm_l can be neglected in the
case of slow variations. For fast variations, it may cause instability.

A necessary, but not sufficient, condition for stability is
internal stability of the learning filter (representing the inner
loop). Optimal Wiener design, presented in [2], [5], results
in stable learning filters L£1(g™"). For adaptation laws ob-
tained by other means, stability must be verified separately.

In general, the outer feedback via the feedback noise
also has to be taken into account. A sufficient but conser-
vative condition for stability of this feedback is for bounded
regressors provided by the small gain theorem [6]: For causal
and L,-stable £,(g~*)Z; , stability is preserved if

la*La@ ) 2Zehsye-rllp < YllAege—ally 5 ¥ <1 .

Our aim here will be to present a less conservative stabil-
ity condition and also present performance estimates for the
case of FIR systems with white input data.

3. THE TRACKING MSE
By (7) and (12), the tracking error can be expressed as

hesre = (I = ¢ LiR)Aesk — Laorvy — LxZihyy .
(13)

N

Thus, three terms affect the tracking error: The lag error
I- "L:kR)hH_k, an error term L(;v; caused by mea-
surcment noise, and a feedback noise term Ly, Zthm 1 in-
fluenced by old parameter tracking errors.

By Assumption 1, h; and ;v; are independent. If ﬁt+k|t
is stationary, then the error covariance matrix (5) becomes

Pe=Vi+ Ve, + Vo + Vo +VE o (14)
where }

Vi = E(I-q *LiR)her (1- ¢ LiR)Aers)”

(15)

VE, = E(Lipwr)(Lrprve)* (16)

VE = B(LiZihys1)(CrZehyer)* amn

The last two terms in (14) are due to correlations between
the feedback noise, the lag error and ¢;v, respectively:

vE =

ki —E{(I - g *C,R)hesi(Cr(Zehes—1))"}

- B{((0- ¢ LiR)hsyr)* L (Zihye—1)}
VEozi = E{Ck(peve)(Le(Zihye—1))*}
E {(Lx(peve))" Lx(Zehys-1)} -

From a tracking point of view, the elements of i canbe
regarded as slowly time-varying if the feedback noise can
be neglected when calculating the tracking performance [7].
This definition is closely related to other definitions of the
property of slow variations [8, 9]. The tracking performance
can then be obtained by evaluating only the first two terms
in (14). This is illustrated in [7] for algorithms with stable
learning filters of arbitrary structure.

Non-negligible feedback noise can be handled when-
ever successive regression vectors ¢} can be assumed in-
dependent, see e.g. [10, 11, 12] for LMS results based on
this independence assumption. For £ of general structure,
closed-form expressions can then be obtained for term 3
n (14), V;h, while the two last terms vanish [3]. Unfor-
tunately, regressor vector independence is a restrictive as-
sumption, which is not valid when the regressor elements
consist of lagged outputs from a dynamic system.

However,. for FIR systems with complex- valued white
inputs, we can obtain good approximations for vk with-
out assuming independent regression vectors.

Zh’

4. TRACKING OF FAST VARIATIONS IN FIR
SYSTEMS WITH WHITE INPUTS

Consider the scalar finite impulse response system (1) with
(18)

0 = (v U1 .. Up—m41)
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and assume the input data u; to be white with zero mean
and variance o2 (R = ¢2I). '

Closed form expressions are now derived for tr (P ) un-
der the following approximations:

Approximation 1:

tr B (Z; Zihye1 Ry, 1) = trE (Z320) B (Aye—1h7),_y)

9

Approximation 2: The feedback noise Z¢hyj;p is un-
correlated with ¢, v, and h,, V7.

Approximations 1 and 2 can be shown to hold exactly
for M = 2 when input data has constant modulus [3]. They
do not hold exactly for M > 2, but turn out to be good
approximations for FIR systems of higher order.

Independence between Z; and hy;_, would imply (19),
but such an assumption is not equivalent to (19); it would
place unnecessarily strong restrictions on the statistics.

Under Approximation 2, the two last cross-terms in (14)
are neglected. This is not necessary, but it simplifies the
calculations.

The family of tracking algoritms is now confined to a
“Wiener LMS” algorithm structure [4] that for white regres-
sors utilizes diagonal stable learning filters

o Q@1 SNy
Lig™) = 5D ail = ;Lilq . (20)

Here, Q1(g~!) and B(g™!) are polynomials®. For LMS (4),
(7) gives

Hivs
1- (1 - II'LMSU%)q_l

By (7), (12) and (20), the tracking error becomes

LighH=

I. 1)

bk = (T—a *Lr@ )02 heyr — Lla™me (22)
- Bah-gFQ@™, o Qe
B@™h 028

Introducing the Pearson kurtosis?, defined as
A
Ky = Elug)/(E|wl?)? , (23)
the main result can now be presented.

Theorem 1: Under Assumption 1, consider the FIR sys-
tem (1) (18) with white input data u; that are either circu-
lar complex for arbitrary FIR degree M or real-valued, for
M < 2. Let the parameter vector h; be estimated by (6)-(7)

1with £ and R being diagonal, the filter M, in (2), obtained via (7),
will also be diagonal.

2For constant modulus data, k, = 1, for circular complex-valued
Gaussian data k., = 2, and for real-valued Gaussian regressors, K, = 3.

with a stable £(¢~*) having the structure (20), resulting in
stationary lag errors with finite second order moments. Un-
der Approximation 1 and 2, a finite steady state mean square
parameter error tr (Py) then exists if and only if

1
= moy Yis, Lz

66 = 1 @4
is stable, where
m & ky+M—2 . 25)

The k-step estimation error is given by

tr () = tr (VE) +tr (VE,) +tr (V) (26)

where B —a Q@™
tr(VEY = qa )—4q kg h 2 (27
(Vi) I 5D t+kllz 27)
k o
(V) = M2% (28)
tr (V) = mtr(P1)Zk .29
in which -
a 1 Qr(z"H)|" dz
a 1 e 30
T fam | BEY | 2 o)
tr(v},)+M§§21
R e b

Proof: See {3] |

Note the FIR order M in (25). The allowed gain of
L1(g™ "), determined by (24), therefore decreases with M.
Also, note the dependence on the kurtosis &.,.

The lag error term (27) can be calculated if we assume
the second order moments (spectral density) of h; to be
given. Note, however, that if drifting parameters (random
walks) are assumed, then the adaptation law must be de-
signed so that the lag error covariance (27) remains finite.
Polynomial Wiener designs [4] have this property.

A separate expression (31) is provided for the tracking
error of one-step prediction estimates tr (P;). This factor
enters the general expression (29) for the feedback noise
contribution, due to the feedback via hy;_; in Fig. 1.

5. EXAMPLE

The validity of Approximations 1 and 2 and the accuracy of
the results presented in Theorem 1 will be investigated next.
Consider the tracking of a time-varying FIR system (1)(18)
with white complex-valued regressors, u; € {1, —1,1,—i},
with all four values having equal probability (k,, = 1). The
parameter dynamics is governed by the oscillatory system

hs = 2pcoswohi—1 — pPhi_s + € , (32)
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here with w, = 0.05 and p = 0.995. We select the additive
noise variance o2 = 0.01 and E (e;e}) = (A\e/M)I, where
A is tuned to give E |h|% = 1, resulting in an output SNR
of 20 dB. This corresponds to a case with fast variations,
where the feedback noise is significant. One-step predic-
tion estimates are obtained by LMS (21), with a gain s
tuned to minimize tr (P,) in (31). Table 1 displays the five
contributing terms to the minimal criterion value (14), ob-
tained from Theorem 1 (bold figures). The feedback noise-
related terms are also estimated by simulation over 100000
data (italic figures).

The two cross-terms, which are neglected in Theorem 1
by Approximation 2, are seen to be small as compared to
tr (VIZ;‘). The relative difference between right- and left-
hand terms in (19), called the error in (19) in Table 1, is
small (around 12% or less).

The optimal LMS adaptation gain 22 is accurately pre-
dicted by the theory. (For larger M, Mu22! — 0 since adap-
tation will then become ineffective. Therefore,
mintr (P;) =& E|h:|? = 1 when M — 00.)

The LMS performance is finally compared with a sim-
plified Wiener LMS (SWLMS) tracker, derived in [4], based
on the model (32). In (20), Q1(¢~ ') and S(g™ ") are then

Q@™ = —dag™t) (33)

=d,
A1+@u—u)
1+di(1+4do)(1 - p)

-1 do(1— -2
T+di-p ¢ +d2(1-p)g™"

(34
where d; and d; are obtained for second order AR statistics
(32) as

Bl@aH=1+

, d2=p" . (35)
As for the LMS algorithm, a scalar step-size parameter  is
tuned to minimize tr (P;) in (31). Comparing the last two
lines of Table 1 (tracking MSE for SWLMS) to the first two
lines (LMS), it is evident that SWLMS can provide superior
performance, when using filtering that is matched to the dy-
namics of h;. Robust performance for mismatched designs
can also be investigated by Theorem 1, see [13].

dy = —2pcosw,
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