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Abstract— This paper investigates the estimation and tracking
of time varying propagation channels in the uplink of a time slot-
ted CDMA system. An antenna array is adopted at the base sta-
tion. Both the estimation and tracking are performed by exploit-
ing the low-rank nature of the channel matrix. The accuracy
of the estimate is improved by using a multi-slot approach: the
slowly varying component of the low-rank channel is estimated
from the observation of successive midambles (inter-slot track-
ing), while the fast varying component is updated over the burst
interval in decision-directed mode (intra-slot tracking).

I. INTRODUCTION

Multiuser detectors that combine signals from multiple an-
tennas are powerful tools in CDMA systems. Since the num-
ber of parameters to be estimated grows with the number of
antennas, an appropriate strategy to cope with a large number
of channel unknowns and limited-length training data becomes
mandatory. For a time-slotted CDMA system, we propose to
improve the estimation accuracy by reducing the number of pa-
rameters that describe the channel matrix and by extending the
training set with detected symbols. These two tools are com-
bined in a method of reasonable computational complexity that
also allows the tracking of the temporal variability within time
slots caused by rapidly moving mobiles.

The reduced rank (RR) channel estimation methods provide
a parsimonious parametrization of the channel matrix. The
maximum likelihood solution proposed in [1] for the estima-
tion of a RR linear regression has been applied to single-user
[2]-[3] and multi-user [4] channel estimation in mobile com-
munication systems. Since in time-slotted systems the accu-
racy of the channel estimate can be improved by exploiting
training data from multiple slots [5], here we propose to ex-
tend the multi-user RR estimate [4] to multi-slot observations.
In multipath propagation the amplitudes of the paths change
rapidly due to fast fading, while their angles and delays will be
fairly constant over several time slots for reasonable geometries
and speeds. The low-rank signal subspace for each user will
therefore be slowly varying and it can be estimated from the
training sequences of successive slots (inter-slot estimation).

If the velocity of the mobile is large, then the channel fading
within the burst cannot be neglected and an adaptive estimator
is needed (intra-slot tracking) [6]. Starting from the estimate
obtained from training data, the fast varying components of the
low-rank channel are tracked over the burst interval in deci-
sion directed mode, using a sliding window multiuser detector
(SWD) [7]. We propose a way of tracking only the fast vary-
ing component of the reduced-rank channel, which reduces the
parameter space and improves the accuracy.

Notation: Lowercase (uppercase) bold symbols denote vec-
tors (matrices), (.)* is the complex conjugate. For matrices,
()T is matrix transpose, (.) is the Hermitian transpose, ||.| |2
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Fig. 1. Frame and burst structure for time-slotted CDMA systems.

is the Frobenius norm, A = Af/2A1/2 is the Cholesky de-
composition of the M x M matrix A, eig,{A} denotes the
M x r matrix of the r leading eigenvectors of A, a = vec{A}
is the stacking operator, and & is the Kronecker product. We
will use three different discrete time indexes: the chip time ¢,
the symbol time ¢ and the frame index ¢.

II. REDUCED-RANK CHANNEL MODELS

A time slotted CDMA mobile radio system uses a combi-
nation of TDMA (time division multiple access) and CDMA
(code division multiple access) to separate the users in the
time and/or in the code domain. The frame structure of the
TDMA component is illustrated in Fig. 1. Each frame has du-
ration Ty and is subdivided into N slots. An uplink is consid-
ered where K mobile users are active in each time slot. They
use the same frequency band but different spreading codes,
cr = [ex(1) -+ cr(Q)]T for the kth user (Q is the spreading
factor). During the time slot each user transmits a burst of
duration T;, = Ty/Ny consisting of two data blocks, a user
specific training sequence (midamble) and a guard period. The
known training sequence consists of N,,, = N + W — 1 chips,
where W is the channel length in chip intervals 7 and N is the
number of chips used for channel estimation. Each data block
contains N; QPSK symbols of duration T; = QT,. The time
interval between two successive slots of the same user is 7';.

The discrete-time model of the uplink should describe the
signals received by the M antennas/radio access points, sam-
pled at the chip rate 1/T, after chip matched filtering. The
time-varying baseband channel between the kth mobile trans-
mitter and the receivers can be described by the M x W space-
time matrix Hy(t) = [hy 1(¢) - hy a(t)]T. Here the vector
hy, ., (t) represents the discrete-time channel impulse response
for the link between the kth user and the mth antenna. The
propagation channel is modelled by the superposition of Py
paths, each characterized by the direction of arrival (¥, ;,), the
delay (7, ;) and the complex valued amplitude (o, , (2)):

H(t) =Y o p(t)a(k p)g(Trp) " (1)
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The W x 1 vector g(7x,p) represents the chip pulse shape de-
layed by 7, and a(¥}, ) is the M x 1 array gain for ¥}, ,,. The
angles and the delays vary slowly and can therefore be assumed
to be invariant over L time slots, if L is not too large. The fad-
ing amplitudes ay p(t) change much more rapidly due to the
movement of the mobile and are assumed to be uncorrelated
from slot to slot.

Let Rg ) = Eo[Hg(t)Hg(t)"] denote the spatial correla-
tion matrix of the channel. Its rank-order rg ; corresponds to
the number of the discernible angles. The number of the re-
solvable delays is equal to the rank-order r7 j of the temporal
correlation matrix Ry x = Eqo[Hg(t)%"Hy(¢)]. The channel
Hj,(t) lies in the subspace spanned by either the rg lead-
ing eigenvectors of Rg ;. or the rr; leading eigenvectors of
R . Therefore we propose to calculate the signal subspace
by estimating the correlation matrices from the observation of
L successive slots and then project the least squares estimate
of Hy(¢) onto the corresponding subspaces.

This is done by extending the reduced-rank model [1]
to multiple slots. The model structure for Hy(t) will be
constrained to have low rank 7, = min(rsg,rrr) <
min(M,W). 1t is represented as the product of a M x 7y
space (S) component Ay(t) and a W x rj, time (T) compo-
nent By (¢). Two alternative models will be used to describe
the temporal variability of the low-rank channel matrix:

Model S-RR
Model T-RR

H, (t) =
Hy(t) =

A (t)By; 3)
In the S-RR model the S-component remains constant, whereas

the T-component varies over the bursts. The opposite holds in
the T-RR case.

The model S-RR is appropriate when rg; < rr ). For
instance, if there is no angular spread (Y%, = v Vp) the
rank order is 7, = 1 and the channel can be expressed as

Hy,(t) = aybfl(t), where by (t) = 521 akp(t)g(Tr,p) and
a; = a(¥). More generally, the channel may be composed
of r, > 1 clusters, each comprising paths having similar an-
gles but different delays (the attributes “different” and “simi-
lar” are to be understood with respect to the resolution of the
antenna array and to the system bandwidth). The rank-order
of the channel matrix can then be approximated by the num-
ber of the clusters, 7, = 75,%. A similar reasoning applies to
the T-RR model, where the rank is determined by the temporal
pattern (the number of the resolvable delays), 7, = 77 .

III. INTER-SLOT CHANNEL ESTIMATION

Consider the model for the signals received by the antenna
array during the ¢th midamble, ¢ = 1,...,L. The channel
matrix of the kth user is assumed to be constant during the
training period and is denoted by Hj(¢). The estimate of
the K channels is based on the transmission of K different
training sequences. Each training sequence is arranged in a
W x N Toeplitz matrix Xy, to represent the operation of con-
volution with the channel. Let Y (¢) be the M x N matrix
containing N samples of the signals received by the M anten-
nas. The multiuser matrices H(¢) = [Hy({)---H,(¢)] and
X = [XT'... XT]7T include, respectively, the K channels and

the K training sequence matrices. The signals received during
the L midambles can now be represented by

K
=Y Hi ()X, +N(() = HOX+N(), L =1,..., L,
k=1
“
where N(¢) = [ng(1)---ny(N)] represents both the addi-

tive ambient noise and the inter-cell interference. The noise
is assumed temporally uncorrelated and spatially correlated,
n(t) ~ N(0,R,,), with [R,];,.m, = 02 being the variance
at each antenna element.

The unconstrained (or full rank, FR) maximum likelihood
(ML) estimate of the channels V/ and the covariance matrix of
noise are given by [4]

=YX (XX (5)

)X][Y(0) —HOX]?. (6)

If the rank of the channel matrix is smaller than min(M, W),
the use of a reduced-rank model (2)-(3) is advantageous for the
reduction of the unknown parameters. Here the RR estima-
tion is extended to multi-slot observations in order to further
increase the accuracy of the channel estimate. The models (2)-
(3) lead to different RR algorithms: multi slot RR estimation in
the space domain (S-MS-RR) and in the time domain (T-MS-
RR) respectively. A third estimation method is obtained as a
combination of the two algorithms (ST-MS-RR).

In the following sections the RR multi-slot estimates are ob-
tained from the ensemble of the L whitened FR estimates de-

noted by H(¢) = [Hy(¢) - - - Hy (¢)], where Hy,(¢) is
H,(0) = R, A (OR)7, 7

and R, 1 = XkX,fI /N. The whitening is carried out by as-
suming that the correlation between the training sequences of
different users is negligible.

A. RR Estimate in the Space Domain (S-MS-RR)

The channel model (2) assumes an invariant S-component
for the channel, while the T-component changes from frame to
frame. Let us define for the kth user the estimate of the spatial
correlation matrix of the whitened channel estimate:

L ~
H.(OH,, (0).
=1

Ry = ®

=] =

According to the system model (4), it can be shown that the
multi-slot ML estimation of the channels and the covariance of
the noise under the constraint Hy, (¢) = A;BH (¢),Vk, £, yields
the solution (see [8] for single-user estimate):

=RA g HL(OR, /2

I:IRR,k:(£> = AkBkH(g) zx,k ° (9)

where f{n is defined in (6) and Ilg; = USUg is the pro-
jector onto the kth signal subspace. The latter is spanned by



the 7 leading eigenvectors of f{&k: Us = eig,, {f{Sk} The
noise covariance matrix is estimated from the residuals of the
channel estimation N(¢) = Y (¢) — Zszl Hgr 1 (0) X4, as:
R.rr = 20, N(ONH(¢)/LN.

B. RR Estimate in the Time Domain (T-MS-RR)

This variant assumes the model (3). The temporal correla-
tion matrix of the whitened channel estimate for the user k is:

~

L
Rry =7 > A (O, (0) (10)
=1

Similarly to (9) the multi-slot ML estimate under the constraint
Hy(¢) = Ax(O)BE, Vk, (, is given by [4]

Ay () = A (OB = REZH (0TI, R (1)

zx,k

Here I, = UrUZ is the projector onto the signal subspace
estimated for the kth user. The projector is formed by the

eigenvectors Ur = eig,, {Rr .} associated to the 7, largest
eigenvalues. The noise covariance matrix is estimated as in
Section I1I-B.

C. RR Estimate in Space and Time Domain (ST-MS-RR)

The channel estimate can be obtained by combining the
methods S-MS-RR and T-MS-RR and estimating the signal
subspace in both the temporal and the spatial domain [4], [5]:

Hgr 1 (0) = RE/ 115, Hy (0) Ty, R/

rx,k (12)
Here IIs ) (II7) is the projector onto the space spanned
by the 75 (r7,;) leading eigenvectors of the spatial correla-
tion matrix (8) (temporal correlation matrix (10)). In general
TSk F Tk

IV. INTRA-SLOT CHANNEL TRACKING

For mobile users moving at high speed, the coefficients of
the matrices Hy, (¢) vary significantly and an adaptive algorithm
must be adopted to track the channel variations. The RR esti-
mate can then be obtained as follows. First the training se-
quences are used as described in the Section III. The estimate
so obtained is then adapted recursively within each slot using
the decided symbols as regressors.

We will investigate two different tracking approaches. The
first method performs an update of the unconstrained estimate
of Hy,(t) and then reduces the rank by projecting the updated
channel estimate onto the invariant signal subspace. The sec-
ond method exploits the low-rank property while tracking by
adjusting only the fast varying component of the channel.

A. System Model

Consider the received signal {y(¢)} generated by the trans-
mission of one data block of N, symbols {dj(7)} (the slot in-
dex is dropped in this section as it is not significant)

y(t) =Y Hi(t)xk(t) +n(t), (13)
k=1

where ¢ is the discrete chip time and y(¢) is the M x 1 vector
containing the ¢th sample of the received signals. The elements
{xk(t)} of the vector xx(t) = [wx(t) - 2r(t — W + 1)]T
are obtained in the decision-directed mode by spreading the
estimated symbols {dy ()} with the code cg. If the channel
does not vary significantly during the symbol interval, a dis-
crete time model at the symbol rate can represent () samples of
the received signals (13):

K

Y (i) =Y Hi ()X (i) + N(0).

k=1

(14)

Here ¢ denotes the discrete symbol time, while Y () and Xy, (¢)
are matrices containing the () snapshots of the received and
transmitted signals.

The tracking algorithms discussed in this Section are con-
fined to the channel model (2) and are only applied forward in
time from the midamble based estimate calculated as in (9).

B. Unconstrained Tracking

A simple adaptive method is obtained by considering the
model (14) without any constraint on the channel matrix:

Y (i) = H(i)X (i) + N(i), (15)

here H(i) = [Hy (i) -+ - H (4)], X (i) = [X{ (i) - X ()]
The unconstrained channel estimate H(7) can be adapted from
(15) by a recursive algorithm such as recursive least squares
(RLS) or least mean squares (LMS) [9]. The RR estimate for
the kth user is then obtained from (9) by projecting the updated
estimate H (7) onto the signal subspace:
I:IRR’/C(Z') = R5/2H5’/€R5H/2I:Ik(i>. (16)
The projector Il ;, and the covariance matrix R, are obtained
by the multi-slot estimation described in Section I1I and remain
unchanged over the burst interval. As an example we consider
a block RLS algorithm with exponential forgetting factor A [9].
If the velocity for all the mobiles is very low, then the forget-
ting factor could be set very close to A = 1 to virtually extend
the training sequence and thus improve the performance of the
channel estimate (bootstrap estimation method). Indeed, the
accuracy depends on the length of the training data and will be
improved by a factor NsQ/N for large signal to noise ratios.

C. Reduced Rank Tracking

By assuming the S-RR channel model (2), the data model
(14) for the adaptive channel estimator reduces to

K
Y (i)=Y ABf (i) Xk (i) + N(i). (17)
k=1
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Fig. 2. Comparison of the normalized MSE for single-slot (SS) and multi-slot
(MS) reduced rank channel estimation (L=20).

In order to convert (17) into a conventional linear regression
model, the data collected at the ith instant is stacked into
the M@ x 1 vector y(i) = vec{Y (¢)}. Using the property
vec{ABC} = (CT ® A)vec {B}, we obtain:

(i) = ¥ ()b (i) +n(i) = ¥ (i)b(i) + n(i), (18)
k=1

where n(i)=vec{N(i)} is the noise vector, the Wr, x QM
regressor matrix Wy, (i) = X; (i) @ A is known (as Ay, is
estimated from multi-slot) and by (i) = vec{B# (i)} is the
parameter vector of length Wry, for the kth user. The model
(18) is a linear regression, where W (i)= [®1 (i) .- - W ()7
denotes the regression matrix of dimension Wr x QM, with
r = Z,ﬁ{:l 1, and b(i)= [b, (i) - - - bg (¢)] is the overall pa-
rameter vector of length Wr.

The time varying parameter vector b(4) can be estimated by
standard recursive algorithms having the structure

e(i) = y(i)—¥(@)b(i),
b(i) + L) ® (i)e(i).

Above (i) is the prediction error and I'(4) is a positive defi-
nite matrix. The channel estimate is obtained from the updated

parameter vector by, (i 4+ 1) = vec{By.(i + 1)} as

(19)
(20)

b(i+1) =

Fpp (i +1) = A BHE (i +1). 1)

The LMS algorithm corresponds to (19)-(20) with the gain
matrix I'(¢) = p(é)Iw, where (i) is the time-varying gain
factor. An approach to improve the adaptation performance
is to use a time varying step length () that decreases with
time to a stationary value p. Furthermore, 1, could be op-
timized with respect to the mobile velocity and the signal to
noise ratio (SNR). A large SNR allows a larger step length
and faster tracking [6]. Similarly to the RLS algorithm de-
scribed in the previous section, if the mobile is moving very
slowly, 1, should be chosen close to zero so that the method
reduces to a bootstrap channel estimation technique. As users
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Fig. 3. Comparison of the performance of single-slot (SS) and space-time
multi-slot (ST-MS) channel estimation (L=10). The channels are time invariant
over the burst interval.

can have different velocities and different SNRs, a user-specific
step length can also be introduced by defining the gain matrix

as F(Z) = diag{:“‘l (i)Irlwv s wU'K(i)ITKW}'

V. SIMULATION RESULTS

In the examples below the performance of the adap-
tive RR channel estimation is evaluated by simulating the
uplink of the UTRA-TDD standard. ~The numerical re-
sults refer to a linear antenna array of M = 8 om-
nidirectional antennas half-wavelength spaced apart, with
K = 8 users being active in all time slots of duration
T, = 666 ps. Each data block contains Ny = 61 QPSK
symbols, spread by Hadamard codes having spreading factor
@ = 16. The training sequences are chosen according to the
standard specifications with length N,,, = 512 and their corre-
lation properties are such that ﬁXkX}fI H << HXk.X,fI , for
k # h. The TDD-UTRA system operates at approximately
2 GHz with a frame duration of Ty = 10 ms. If the velocity
of the mobile user is v >50 km/h, the fading will be almost
uncorrelated between slots in different frames. Moreover, the
assumption of stationary angles and delays seems reasonable
for L < 20 slots, as a MS with velocity v < 200 km/h moves
less than 11m. This motivates the use of a multi-slot approach
for channel estimation.

A three-path propagation channel is simulated for each
user. The path angles are random variables with distribution
Vpp ~ Ny, 02) with 9 ~ U[—m/3,7/3] and standard
deviation 0y = m/36. The delays are fixed to 7,1 = 0,
Tro = 0.731., 743 = 5.827, and the channel-length is
W = 13. The complex amplitudes are Rayleigh distributed,
o p(t) ~ CN(0,03), with of =0.28, a3 =0.58, a3 =0.14.
Each time varying amplitude is simulated as a random pro-
cess with Jakes power spectral density function depending
on the Doppler frequency fp. The rank of the channel is
r, < 3 for each user. The same holds for the rank of both
the spatial and the temporal component, i.e. rg < 3 and
rr < 3. In all the simulations the Gaussian noise is spatially
correlated due to an interferer with direction of arrival 7 /6:
[Ro]m.i = 02{0.9 exp(—im sin(7/6)) }' ™.
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Figure 2 compares the performance of the FR estimate with
the single-slot (SS) and multi-slot (MS) RR estimates with

L = 20. The normalized MSE |[|AH|2/|H]|® is
evaluated for varying signal to noise ratio defined as
SNR = E[(||hg.m||*)]/c? The RR estimates that assume
rank 3 outperform the full-rank estimate for all the SNR values.
With respect to the SS-RR, the gain of S-MS-RR and T-MS-RR
is approximately 3 dB in SNR and the accuracy is further im-
proved when both the spatial and temporal projections are used
in ST-MS-RR, leading to an overall gain of 8 dB.

In Fig. 3 the SS-RR and the ST-MS-RR with L = 20
are evaluated in terms of BER for uncoded bits vs.
SNR = Ewit /No. The fading is assumed uncorrelated from
frame to frame and the channel is static over the whole burst
interval. The data symbols are estimated by a sliding window
MMSE multiuser detector [7]. The multi-slot RR estimate out-
performs both the FR and the single—slot RR estimates and ap-
proaches the performance obtained with known channels.

For moderate fading, such as fpTsNs; = 0.1 considered in
Fig. 4 (v = 200 km/h), the estimate obtained from the training
sequences can not be used within the whole slot as the error
probability increases at the ends of the burst. The adaptation of
the channel estimator is considered in Fig. 5. The performance
of the static and dynamic MS-RR estimators are compared for
L = 10. Two different algorithms based on the S-RR model
are considered for the adaptation: a RLS unconstrained track-
ing and an LMS reduced-rank tracking. In both the methods
the performance are improved by applying also the temporal
projector Il ; to the updated channel matrix (21), as in (12).
An MMSE-SWD is used to estimate the data symbols. The use
of the constrained tracking guarantees lower BER at moderate
and high SNR’s compared to the unconstrained tracking.

The correlation matrix used in the multiuser detector
changes over the burst interval as the correlation values depend
on the convolution between the user signatures and the time
varying channels. The update of the detector can be a compu-
tationally complex task due to the correlation matrix inversion,
hence an efficient algorithm has to be used such as [7].

VI. CONCLUDING REMARKS

An adaptive reduced-rank estimator for time varying prop-
agation channels has been presented. The RR estimate is ob-
tained from the training sequences of successive slots by con-
straining the spatial and/or temporal component of the low-
rank channel matrix to remain unchanged. Then it is adapted
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Fig. 5. Performance of static and dynamic multi-slot RR channel estimation
for v=200km/h.

recursively within each slot by using the estimated symbols.
Simulations have indicated improvements in the system per-
formance for both slow and fast time-varying channels.

In this preliminary investigation, standard recursive algo-
rithms have been considered, in particular RLS and LMS. Fur-
ther performance improvements can be obtained with suitably
tuned Kalman trackers that use higher order models for the fad-
ing statistics, and models for parameter correlations. Since the
number of parameters to be tracked will be rather high for large
M, Kalman estimator will have a rather high computational
complexity. However, adaptation laws can be constructed to
provide close to Kalman performance at a computational com-
plexity similar to that of LMS [6], [10]. The use of this method
in our present problem will be further investigated in our con-
tinued work.
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