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ABSTRACT

This paper addresses the problem of designing a ro-
bust, VLSI oriented, pilot assisted channel estimation
for OFDM receiver in the presence of frequency offset.
In the absence of frequency offset, two channel esti-
mation algorithms are studied: Lagrange and Wiener
interpolators. The proposed schemes are used for de-
signing DVB-T 2K mode channel estimation unit. For
time interpolation, the experimental results show that
the performance of the Wiener filter is far better than
the performance of the Lagrange interpolator.

In order to derive a VLSI oriented channel estima-
tion algorithm, the length of the filter must be opti-
mized for a given performance (BER or MSE). In this
paper, in the absence of frequency offset, performance
tradeoff is described.

The frequency offset introduces ICI (Inter-Channel

Interference) that further degrades the BER of the OFDM

system. An accurate closed form expression for the ICI
noise power is derived. Then, based on this formula,
a robust Wiener is designed. The experimental results
show that the performance of the robust Wiener filter
is far better than that of the Wiener filter designed
under perfect synchronization.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM)
is a multi-carrier modulation very robust in multi-path
fading environments[1]. Recently it has been proposed
as a modulation scheme for broadband wireless and
wired applications. These applications range from digi-
tal audio/video broadcasting known as DVB-T (Digital
Video Broadcasting over Terrestrial channel) and DAB
(Digital Audio Broadcasting) to high-data rate indoor
wireless communication (WLAN) [2]. The basic idea of
OFDM is to split the entire bandwidth into orthogonal
sub-channels, and modulate each one separately. Thus

one major issue in OFDM is to preserve orthogonality
among adjacent sub-carriers. This is done by suitable
selection of the spacing between adjacent sub-carriers.
However, in reality even if the spacing has been opti-
mally selected, the orthogonality conditions among ad-
jacent sub-channels are not preserved due to frequency
offsets and imperfect synchronization between the re-
ceiver and transmitter. In [4], it has been shown that
the performance of the OFDM receiver is highly vul-
nerable to the synchronization error.

Over the last decade, synchronization of OFDM re-
ceivers has been the subject of extensive research, see
e.g. [11, 10]. Most of the reported schemes for the
case of coherent OFDM assume perfect estimates of
the channel impulse response at the receiver.

In the last decade, channel estimation for coher-
ent OFDM receiver has been studied extensively. In
[5], 2x1D Wiener filter has been compared against 2D
Wiener filter in terms of complexity versus performance.
The author concluded that for a given complexity the
2x1D Wiener filter has similar performance to the 2D
Wiener filter. In [13], the case of a mobile receiver has
been considered, a channel estimation scheme based
on 2x1D Wiener filter has been proposed. The Wiener
filter for the frequency interpolation has been adapted
based on the estimation of the delay spread of the chan-
nel.

Mismatch analysis between interpolation filter and
the actual channel statistics has been analyzed in [7].

The aforementioned works have addressed the prob-
lem of designing the channel estimation units for OFDM
mobile receivers under different assumptions. However,
to the best of our knowledge there are still open ques-
tions that were not efficiently addressed by the afore-
said works. These questions are

1. What will be the effect of the frequency offsets
on the performance of the channel estimators?

2. What is the robustness of the channels estimators



if the assumption regarding the statistics of the
channel is different from the original channel?

3. Under these circumstances, what will be the way
to derive a VLSI oriented channel estimation al-
gorithm?

The rest of the paper is organized as follows.

In Section 2 the problem is formulated and our work is
put into perspective with the existing approaches. The
channel estimation algorithms are reviewed in Section
3, a robust Wiener filter designed in the presence of fre-
quency offset is described, and a closed-form expression
for the ICI noise power is derived in Appendix-A. The
experimental results are reported in Section 4. Finally
the paper is concluded in Section 5.

2. CHANNEL ESTIMATION ALGORITHMS
FOR OFDM RECEIVER

2.1. Problem formulation

Following the same notations used in our previous pa-
per, the complex envelope of the OFDM signal is given
by the following equation[6].

v(t) = i Kim ¢ 2 k(t = mTy) ho(t—mT,
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where ¢(m) = [Cm,KpinsCmds--->Cm,Kpnae)~ 1S a col-
umn vector containing K, 4, — Kmin+1 complex source
symbols at epoch m, Ty = N x T is the duration of
the OFDM symbol, T is the duration of the complex
symbol,
Cm i, N = 2/1082(Kmae=Kmin+1)1 ig the size of the IFFT
processor, K = k — K’g‘”, Kz is the value of the
carrier number K,,,z,Kmin is the value of the carrier
number K,;n, hq(t) is the amplitude pulse shaping sig-
nal of duration T, Ts = Ty + A is the OFDM symbol
duration after cyclic prefix, A is the duration of the
cyclic prefix. In the rest of the paper, K,q; and Ko
are fixed to NV — 1 and 0, respectively.
In the sequel, the expression of the received symbol,
in the case of perfect and in the presence of frequency
offset is reviewed.
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2.1.1. Perfect synchronization

Under a perfect synchronization assumption, the re-
ceived signal, r(t), after sampling, is given by the fol-
lowing equation.

Nr—1
r(iT) = > h(GT)or((i — H)T) + m(GT),  (2)
=0

where hy(jT) is the impulse response of the channel,
N (4T") is the Additive White Gaussian Noise (AWGN)
sampled at instants ¢7", and N, is the channel length.

After the FFT, the received complex symbols, Chn
is given by Eq.3.

Cemn = CknHim + Coyns (3)

where Hj, ,, is the frequency response of the channel
given by Hy , = 0" by (i) exp (=527 ), and ¢, =
iy mk(i) exp (—j2m ).
In order to recover the original complex symbols, cj,p,
Hy ,, must be estimated. The pilots are inserted, by
the transmitter, in an ordered manner. The receiver
uses these pilots to reliably estimate the channel us-
ing efficient interpolation schemes. The location and
number of pilots depend on many factors including,
the characteristics of the channel (Doppler and delay
spread) and the characteristics of the OFDM (chan-
nel encoding, modulation and duration of the OFDM
symbol)[5][13].

Generally speaking, the wireless medium (WM) is
mathematically described by the following equation [9]

h(t,7) = Z%(t)C(T - i), (4)

where «;(t) and 7; are the delay and complex amplitude
of the ith path, respectively. The entity ¢(7) is a pulse-
shaping filter. The frequency response of the WM is
given by Eq.5.

+oo
H(t, f) = / h(t,7)e= 927, (5)

—0o0

The channel given by Eq.5 is a continuous WSS channel
which is assumed to be band limited. The sampled
channel is given by Eq.6

H[mT,, kAg] = C(kAs) Y vi(mT,)e > 417 (6)

At this point it is necessary to mention that Eq.6 is the
correct version of Eq.3 derived in [9].

In order to estimate the channel, the transmitter in-
serts pilots at known locations. The locations and the
density of the pilots should allow for accurate estima-
tion of the channel, as discussed earlier . The distance
between the pilots must comply with the Nyquist The-
orem. This issue is however beyond the scope of this
work. The pilots are thus placed in a 2-D matrix. Fig.1
depicts an example of a received OFDM frames.
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Figure 1: Locations of the pilots in OFDM frames.

2.1.2. In the presence of frequency offset

In the presence of frequency offsets the expression of
the received symbol given by Eq.3 is not appropri-
ate. Instead the appropriate expression for the received
symbol is given by Eq.7
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where € is the relative frequency offset [10].

The fundamental difference between Eq.3 and Eq.7
is that the received complex symbol is further contam-
inated by a noise which is not only additive but also
multiplicative. Additionally, its statistics depend on
the frequency offsets. This noise deteriorates the per-
formance of the channel estimation schemes.

2.2. Related work

The complexity constrained channel estimation in the
absence of ICI noise is studied in [3]. The study of
the robust channel estimation for OFDM systems is
reported in [7] and [8]. In [7], Li et al. have showed
that the performance of the MMSE estimator is not af-
fected by the mismatch in time-correlation of the chan-
nel. However, it was found that the performance of the
MMSE is affected by the mismatch in the frequency-
correlation of the channel. A robust Wiener filter has
been derived. This approach is more efficient than the
adaptive filter approach proposed by Sanzi et al [13].

This is because the adaptive filter requires the adjust-
ment of the filter coefficient based on the estimation of
the delay spread of the channel. This re-adjustment of
the filter coefficient requires hardware implementation
of a unit that takes care of a complex matrix inver-
sion, which surely comes at the expense of an increased
receiver complexity and cost (power consumption and
silicon area). In addition, the results presented in [7]
show that the performance of the robust estimator is
very close to the performance of the MMSE estimator
designed to match the channel. The only penalty of
this approach is that the filter length of the robust es-
timator is somewhat larger (50 taps) than that of the
MMSE filter designed to match the channel(5 taps).
In addition to this limitation, the model used by Li at
al. assumes a perfect synchronization. This assump-
tion is unrealistic in practical receiver. Moreover, the
implementation complexity has not been addressed.

The performance of the channel estimation under
the presence of frequency offset has been investigated
by Seung et al. [8]. It was found that the performance
of the channel estimator with frequency offset compen-
sation is better than the case with no frequency offset
compensation. This is because larger frequency offset
may cause a great mismatch in the channel. The above
paper is a good start to study the effect of the frequency
offset on the performance of the channel estimation.
However, still no closed form exists. In addition, no
bounds for the tolerable frequency offset was investi-
gated. This bound is very useful to the frequency offset
compensation algorithm. Moreover, the complexity of
the channel estimation has not been studied.

3. LINEAR INTERPOLATION

In Section 2, the problem of channel estimation is trans-
lated back into the problem of interpolation. The in-
terpolation is a 2-D filtering process. For most of the
wireless channel model the 2-D channel estimation can
be efficiently done using 1-D channel estimation that is,
firstly the time interpolation is executed (vertical direc-
tion in Fig.1), secondly, the interpolator is applied in
the frequency direction (horizontal direction in Fig.1).
In the following, we review two well known interpo-
lators: Lagrange and Wiener. Let f, = {f(k),k =
0,..., N} be a Stationary Discrete-time Stochastic Pro-
cess (SDSP) obtained by sampling a continuous band-
limited process f(t) at time instant, k - T, where T' =
/o, o is such that S(w) = 0 if |w| > o[15]. Let g,
be an SDSP obtained by decimating f, by factor of M
such that g(k) = f(M-k). The interpolation problem is
the process of building up an estimator that accurately
estimates f, given g,. If we denote by f, the estimate



of f, given g,, then the estimator should minimize, in
a statistical sense, the error given by Eq.8

en:fn_fn' (8)

For a given k, such that k is not a multiple of M,
polynomial interpolator uses N, knots in the vicinity
of k to estimate f (k). Given the sequence k =1--- M +
q, we define the N, knots in the vicinity of k by the
following sets N, = {l—Nleft—l, l_Nleft7 SR l} U{l—{-
1,142, ,14+ Nyighs }- This technique can be seen as a
moving window, where the window is centered at k and
its elements are in N,. A window of size 4, Njoz; = 2
and Npigpt = 2 is shown in Fig.2. The number of knots
used to estimate f(k) is Ny, = Nyight + Niese.
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Figure 2: Polynomial interpolator using moving win-
dow.

The estimation of f(k) is given by

Niegi—1 Nyight

Z BiiM(1—1)+ Zal, (1+14), (9)

where 3 ; and o, ; are the polynomial coefficients. There
are several algorithms that compute 3;; and a; ; such as
Lagrange, cubic-spline, Hermitian, and the least mean
square interpolator[14].

In this paper, Lagrange and Wiener interpolators
are considered. Lagrange and Wiener filters belong to
the class of Linear filtering. The main difference be-
tween those two schemes is the way the coefficients of
the interpolator are computed.

3.1. Lagrange interpolator

Let T,; be the sampling rate before interpolation and
T, be the sampling rate after interpolation. Let the
window be centered at m. Lagrange interpolator used
to estimate f((m + pr)Ty) is given by Eq.10, where
pe=%forke{l,...,L—1}and L = %

Nyight

> fm+n)T)x  (10)

=—Niest

F(m + p)Tq) =

Nright Pk — i
i=—Niefe,i#n p _ 4§
The above equation can be seen as a filtering process
using an FIR filter having the following taps,

hﬂ(n) — Herghi ll/

)
i=— Nleft,z;ﬁn 7/ ne{ Nleft; .-

) Nright}-
(11)

3.2. Wiener interpolator

The Wiener filter theory takes advantage of the statis-
tics of the sequences f, in order to derive a filter that
minimizes the mean square of the error given by Eq.8.

Let the sequence r(uTy) =B (f((n + p)Ta) f*(nTy)) be
the autocorrelation of f(n) sampled at instants (n +
)Ty, where p satisfies the following inequality % <
n< % In the rest of the derivation, the variable T,
is omitted from the equations.

In the noiseless case, the Wiener-Hopf equation sug-
gests that, for a given uy, the optimum MSE interpo-
lator of the sequence
f=[f(n— Niest — 1), f(n
is given by Eq.12

- Nleft); Tty f(n + Nright)]ta

Wi = B; ol 12)

‘ A
where p;li = [T(_Nleft - 1)7 ) T(Nright] ’ Rff =FE (ffH)a
and W,’j is the coefficient for the Wiener interpolator.
In the presence of noise, which is assumed to be
additive, uncorrelated, and WSS, the received signal
at the instant of time n, is given by Eq.13

fnoisy(n) = Ff(n) + w(n) + y(n), (13)

where z(n) is an AWGN with zero mean and a variance
o2. y(n) is an uncorrelated WSS signal with zero mean
and a variance aj. I is an attenuation factor which is
independent of n. Let f,,,;se be the noisy vector of f,
then the Wiener filter acts as a smoother and interpola-
tor. Based on our assumption regarding the statistics of
the noise, we see that pﬁ’noise = E (fnoisefinise ), Satis-

fies the relation pf . ;.. =Tpk. On the other hand the

autocorrelation matrix Re, ;. ..., = F (f no,-syf}foisy)
satisfies the following relation

Rs =TRys + (02 +0.) 1, (14)
N——

noisy fnoisy
02
where I is the identity matrix. Thus, in the presence

of an additive noise, the optimum Wiener filter coeffi-
cients are given by Eq.15

W ise = (Rys +0°T) ' pb (15)

w,noise

The noise power for the ICI noise is derived in Appendix-
A.



4. EXPERIMENTAL RESULTS

In order to validate our approach to answer the ques-
tions described in the introduction (Cf. Section 1), the
digital video broadcasting (DVB-T) has been used as a
case study[17]. This study is a step toward completing
hardware implementation of the DVB-T receiver[16].
In the DVB-T receiver, the parameters such as loca-
tion of the pilots, number of carriers, OFDM symbol
duration, length of the cyclic prefix (A), and the signal
space diagram are fixed. DVB-T supports the follow-
ing modulation: QPSK, 16-QAM and 64-QAM. Each
signal space diagram has two possible configurations:
Uniform if @ = 1, non-uniform if @ = 2 or a = 4. At
the receiver side, the received complex symbol (after
channel correction) is efficiently demapped using the
MUSCOD algorithm described in [16].

In our experiments, the WSSUS channel has been
used to model the WM [12]. In addition, 2K mode
DVB-T with the cyclic prefix of length (A) equals 1/32
and a uniform modulation (¢ = 1) have been used.
It is also assumed that the maximum delay spread of
the channel (D4, in WSSUS channel model) equals
the cyclic prefix length. The BER and the SER were
obtained using the Monte-Carlo simulation techniques
as described in [18].

The simulated BER in presence of an AWGN channel
is depicted in Fig.3.

x QPSK, o=1 1
*  16-QAM, a=1
o 64-QAM, a=1

BER

SNR in dB

Figure 3: Simulated BER for DVB-T, 2 K mode, uni-
form modulation, in the presence of AWGN.

4.1. Perfect synchronization

In order to estimate the implementation complexity,
the number of multiplications and memory consump-
tions are assumed to be proportional to the filter length.

Although, in [19], it was shown that the computational
complexity is inadequate metric to compare the VLSI
implementation of different channel estimation algo-
rithms ( different filter length). This step is however
necessary towards derivation of a VLSI oriented algo-
rithm. The memory consumption tradeoff is related to
the size of the time interpolator. Because the receiver
must keep the previously received OFDM frames in a
memory. These frames are used to estimate the pilots
in the vertical direction shown in Fig.1.

For real time application such as the DVB-T the time
interpolator must be causal. However, for frequency
interpolation, the causality of the filter is irrelevant.
This is because after the FFT processor, the complex
symbols of the same OFDM frame, are available simul-
taneously. In this section, the filter described by L x M
means that Nigy = L and Npjgpe = M and the filter
length is Njes¢ + Npjgpe- Thus the filter is causal iff
M =0.

Fig.4 shows a comparison between Wiener and La-
grange interpolators for the same filter length. From
this figure it is clear that 3x0 Wiener filter (causal) has
almost similar performance to the 3x3 Wiener filter.
In addition, the figure shows that Lagrange interpola-
tor has a very high MSE compared to the Wiener filter.
This is because the filter coefficients for Lagrange inter-
polator are independent of the statistics of the channel.
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Figure 4: Comparison between Lagrange and Wiener
for time interpolation.

Fig.5 shows the performance of the Wiener filter as
a function of the filter length and the SNR. The result
show that in this particular WSSUS configuration, 3x3
Wiener filter has a very competitive performance, with
lower computational complexity, compared to Wiener
filter with higher length.
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Figure 5: Complexity tradeoff for frequency interpola-
tion.

4.2. In the presence of frequency offset

In order to assess the robustness of the Wiener filter,
our first task is to evaluate the accuracy of Eq.24. In
order to achieve this goal, the exact power of the ICI
noise has been obtained using statistical simulation.
The obtained value has been compared against Eq.24
and Eq.20. The results are summarized in Fig.6. The
curves clearly show that Eq.24 is very close to the ex-
act power compared to Moose’s approximation given by
Eq.20. The figure shows that Moose equation is indeed
a tight upper bound of the ICI noise power, V|e| < 0.5.
In order to quantify the impact of the frequency offset
on the robustness of our Wiener filter, both Wiener fil-
ter and robust Wiener filter designed for an SNR equals
20dB have been used for frequency interpolation. Fig.7
depicts the curve of SER as a function of SNR in the
presence of frequency offset, ¢ = 0.02. The dashed
curves are the SER for the robust Wiener filter. For

-5+

- - Closed-form equation
»— Moose approximation

I I I
0 0.05 0.1 015 . 02 0.25 0.3 0.35

Figure 6: Simulated versus estimated 0%, using Eq.20
and Eq.24.

the sake convenience, the SER in the absence of fre-
quency offset and for 16-QAM signal constellation is
plotted in the same figure.

Fig.8 shows the SER for both robust an unoptimized
Wiener filter designed for an SNR equals 20dB and in
the presence of a frequency offset equals 0.1. Thus,
from this results, it is clear that the Wiener filter de-
signed under the presence of frequency offset has al-
ways lower SER than the Wiener filter designed under
perfect synchronization.

5. CONCLUSIONS

In this paper Lagrange and Wiener filter for OFDM
channel estimation have been compared. The compar-
ison is done based on the achievable performance for
a given SNR. For the same filter length, it was found
that the performance of the Wiener filter is far better
than that of the Lagrange interpolator. In addition, a
performance tradeoff to select the Wiener filter length
has been reported. For the case of DVB-T, 2K mode it
was found that 3x3 Wiener for frequency interpolator
has a competitive performance for a given complexity
compared to the Wiener with higher filter length.

The above channel estimators have been designed
under a perfect synchronization assumption. However,
it was found that the frequency offset introduces ICI
noise that degrades the performance of the interpola-
tors. In order to tackle this problem, a closed form
expression for the power of the ICI noise has been de-
rived. It was found that this closed form is very accu-
rate compared to the closed form expression derived by
Moose [10]. This closed form has been used to design
a robust Wiener filter.
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Figure 7: Comparison between Robust Wiener and
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Figure 8 Comparison between Robust Wiener and
Wiener filter designed for SNR = 20dB and € = 0.1.

The outcome of the experimental results showed
that the Wiener designed in the presence of frequency
offset has lower BER than the Wiener filter designed
under zero frequency offset assumption.

The course of this work is to design a VLSI oriented
channel estimation algorithm. Toward achieving this
goal, the effect of the quantization error as well as the
implementation issues of the Wiener interpolator (such
as algorithm strength reduction and low-power archi-
tecture synthesis) will be addressed in the future work.

Appendix-A

The aim of this appendix is to derive a closed-form
expression for variance of I, ,, given by Eq.16.

oior = B (Ienlin) - (16)

Now, assuming that the complex symbols, ¢,y are un-
correlated with zero mean and variance equals one. In
other words E(cg,ncj,,,) = 0(k —1)d(m — n). Following
this assumption, it is easy to see that E(ly,) = 0. If
Iy n is substituted for by its expression given by Eq.8,
we obtain Eq.17.

N-1 N-1

U%CI =K Z z

1=0,l#n \ m=0,m#n

*x n gn* *
Ck,mck,lﬂmﬂl Hk,mHk,l

(17)
Y Using the

sin(me)
linearity properties of the expectation and the assump-
tion regarding the statistics of the symbols ¢, Eq.17
is reduced to Eq.18.

where g} = x e~ Im

N-1

oicr = [sz’nj&fﬂe)r Z

m=0,m#n

E (|Hk,m|2)
3

sin (W(m;vn+e))

(18)
The inspection of Eq.18 reveals that if the channel has a
constant energy, then the power of the ICI noise, 0%,
is independent of the index k, however, this noise power
is still dependent on the carrier frequency n. Assum-
ing that the channel has a constant energy, which is
normalized to one, the entity o7,; can be accurately
approximated by the following equation

N-1

olor = [sz’nj&fﬂe)r Z

m=0,m#n

1
3

sin (W(m;vn+e))

(19)
The formula for the noise power given by Eq.19 de-
pends on the carrier index n. This dependency makes
the derivation of the Wiener filter dependent on the
carrier index, which is far from being an acceptable if
the algorithm is to be VLSI implemented. In [10] an
upper bound for o%,;, which is independent of n, was
found to be

020y < 0.5497sin (we)” , V]| < 0.5. (20)

In order to derive an equation for the noise power which
is independent of the carrier index, we assume that
the frequency error, €, after frequency offset estimation
(compensation) is very small. Under this condition, the
function sin(z) can be accurately approximated by its
first order Taylor series, that is, sin(z) ~ z. By doing
so, Eq.18 becomes

N-1

oter ~ (sin(me))® Y

m=0,m#n

S — e i 21
(m(m —n+¢))’ 21)




In the sequel, we focus on finding a closed-form expres-
sion for ¥,,. If we change the variable from m to k such
that k¥ = m — n, the expression for X,, becomes

N—-1—-n
Sp=7m"2 ( Z (k+e)_2) .

k=—n

(22)

For relatively small €, ¥, can be approximated by the
following equation

12 )
SR+ — —
n®3+50 Mt 5

Thus, for small values of €, the closed-form expression

of the power noise is given by Eq.24

o2 & (% + 9—20 (em)? + % (671')4> (sin(me))? . (24)

(em)*. (23)

This expression is less than the upper-bound given by
Eq.20.
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