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Abstract: Filters can be introduced into LMS-like
adaptation algorithms to improve their tracking per-
formance. This paper discusses the systematic model-
based design of such filters. Parameter variations in
coefficients of linear regression models are modeled as
ARIMA-processes. The aim is to provide high per-
formance filtering, prediction or fixed lag smoothing
estimates for arbitrary lags. The properties of the
time-varying parameters are in general not known ex-
actly, so a robust design for a set of possible models
will be of interest. We minimize the average track-
ing MSE, based on probabilistic descriptions of the
model uncertainty. The method is based on a novel
signal transformation that recasts the algorithm de-
sign into a robust Wiener filtering problem. The per-
formance is illustrated on the tracking of mobile radio
channels in IS-136 systems, based on a model of the
time-variations affected by parametric uncertainty.

1. INTRODUCTION

Algorithms that estimate time-varying parameters of
models and filters in linear regression form are impor-
tant tools for signal processing, control and digital
communication. Kalman estimators are the optimal
linear algorithms when the statistics of the parameter
variations are known. However, their complexity is
often unacceptable in high-speed applications.

The required low complexity of channel estimators in
mobile radio systems has motivated us to develop a
class of adaptation laws that for channel tracking at-
tain close to the optimal Kalman performance, at a
computational complexity close to that of LMS al-
gorithms (Lindbom 1995, Sternad et.al. 2000, Lind-
bom et.al. 2000a). The approach also opens up new
ways of analyzing adaptation laws for fast variations
(Ahlén et.al. 2000), that provide accurate estimates of
the parameter error variance. These and related algo-
rithms can, for example, be applied effectively on the
fading 1900MHz channels of North American IS-136
mobile radio systems (Lindbom et.al. 2000b). Design
of a related class of algorithms has been investigated
by Benveniste et.al. (1990) for slowly varying param-
eters. Section 4 and 5 outline an iterative Wiener
design that is effective also for fast variations.

A model-based Wiener design may become sensitive
to the assumed model. We here propose a method for
decreasing this sensitivity. Using tools from Sternad
and Ahlén (1993) and Ohrn et.al. (1995), the design
equations are in Section 6 modified to minimize the
average tracking MSE, based on probabilistic descrip-
tions of the uncertainty in the parameter models. In
Section 7, time-varying mobile radio channels in IS-
136 systems are estimated. The model of the time-
variations is there affected by parametric uncertainty
in the Doppler frequency and the robust design is per-
formed by using an averaged covariance function.

Notation: Here, R(¢™'), R(¢™*) and R(q™") denote
polynomials, polynomial matrices and causal ratio-
nal matrices, respectively. Conjugate matrices P.(q)
or R.(q) are obtained by conjugating complex coeffi-
cients, transposing and substituting the forward shift

operator g for the backward shift operator ¢~*.

2. OUTLINE OF THE PROBLEM

A sequence of measurement vectors {y;} of dimension
ny|1 is assumed available at the discrete time instants
t =0,1,2,... and to be generated by a linear regression

Y =@ihe + v, (1)

where v; is a noise vector that is uncorrelated with the
ny|np regression matrix ¢f. We assume the possibly
complex-valued regressors to be known at time ¢ and
to be persistently exciting, so that

R 2 E{pw}} (2)

is nonsingular. The covariance matrix R will here
be assumed time-invariant, but it can in practice be
slowly varying. The time-varying parameter vector
T
ht == (hO,t e hnh—l,t) (3)
is to be estimated, with the order n; assumed known.
Models describing the variation of h; are sometimes
called hypermodels (Benveniste et.al. 1990). We here
use linear time-invariant stochastic models

he =H(a e (4)



where e; is white noise with covariance matrix R,
and where H(q™") is an nj|n, matrix of stable or
marginally stable transfer operators. The model (4)
is for now assumed known, but will in Section 6 be
assumed uncertain. Denote the tracking error by

~ A A
hisrie = hirk — eyt (5)

where the estimate Bt+k\t may be obtained by filter-
ing (k = 0), prediction (k > 0) or fixed lag smoothing
(k < 0). Kalman estimators, based on (1) and on
state-space realizations of (4), are the linear estima-
tors that minimize the tracking covariance matrix

A 7 T %
Pk,t = E{ht+k\tht+k|t} . (6)

Since @y in (1) is time-varying, the Kalman gains will
not converge as t — 0o, so on-line Riccati updates are
required.

We here consider a class of adaptation laws that avoid
on-line Riccati updates. Instead, pre-designed linear
time-invariant filters M(¢™') operate on the nega-
tive instantaneous gradient of |g;|? with respect to

hji—1,

€& = Yt — Sotilthtfl (7)
hivee = Mila Do - (8)
The LMS algorithm
7 M
h = ——I pier 9
t+1[t T—q 1 Pict (9)

where p > 0 is a scalar gain, constitutes a simple spe-
cial case of the structure (7),(8). The rational matrix
M, can be selected to asymptotically minimize (6)
under various constraints and assumptions.

3. THE LOOP TRANSFORMATION

The algorithm (7),(8) can be expressed as a stable
and causal filter, denoted the learning filter Li(q™"),
that operates on a signal vector

£ 2 pier + Riltlt—l . (10)
Since (7),(8) give fzt|t_1 =q '"Mi(qg Vpier,

oier =T+ ¢ 'RMy(a)) ' fi -

Thus, we obtain

ilt+k|t = Mk(q_l)(1+q_1RM1(q_1))71f¢ 2 Ck(q_l)ft .

(11)
By (7) and (1),

PLer = ‘Pt‘P:Bt\t—l + oo . (12)

Adding and subtracting Rﬁﬂt_l on the right-hand
side of (12) gives

prer = Rhy—Rhye_1 + (010} —R) g1 +opvr - (13)

We now define
Zy e — R (14)

Zyhyji—1 + prvr (15)

e e

n

which we call the autocorrelation matriz noise and the
gradient noise, respectively. The signal f; which can
be regarded as a fictitious measurement, can then by
using (10), (13), (14) and (15), be expressed as

fi =Rhy + Ztilﬂtfl + oo =Rhy + (16)

see Fig. 1. The design of our adaptation law (7),(8)
has now been transformed into a Wiener filter design
for L;(g™'), where 7; plays the role of noise, see Fig. 2.
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Figure 1: The adaptation algorithm (8) operates in closed
loop. This loop can be decomposed into an inner time-
invariant feedback of Rﬁt|t_1 and an outer time-varying
loop via the feedback noise Ztizﬂt_l.

Figure 2: The filter design problem. The vector h;x is to
be estimated from f;, such that the steady state tracking
error covariance matrix of the parameter error Bt+k|t is
minimized.

The gradient noise 7 is affected by the term Ztﬁﬂt_l,
here called the feedback noise. It is shown in Ahlén
et.al. (2000) that the feedback noise is negligible ei-
ther when h; has small increments or when the noise
v¢ has high variance. Such situations are denoted
“slow variations” (Ahlén et.al., 2000; Macchi, 1995).
The optimal learning filter will then operate in open
loop, with 1y = puv;. Stability and convergence in
MSE is then guaranteed by stability of the learning
filter, which follows directly from a Wiener design.
(While the learning filter L£1(¢”"') must be stable,
the filter M1 (¢™") need not be stable, since it works
within the inner feedback loop of Fig. 1.) An iterative
design must bee performed when Ztizt‘t_l cannot be
neglected, see Section 5.

4. LEARNING FILTER OPTIMIZATION

The criterion (6) for ¢ — oo could be minimized di-
rectly by adjusting L (¢™"), if H(¢™') in (4) and the



properties of 7; were known exactly. Using a polyno-
mial approach to Wiener filtering, the learning filter
is here designed under the constraint of stability, and
under the following assumptions.

Assumption Al: The sequence {p;} is stationary
and known, with R known and nonsingular O
Assumption A2: The gradient noise 1; is white and
stationary with zero mean and known covariance ma-
trix R,. The correlation of n; with h;—; and with
hi_ije—i_1,4 > 0 is negligible. o
Assumption A3: The time-varying parameters are
described by a known vector-ARIMA process

D (g Y =C (g Ve (17)

with R, = Eeie; nonsingular, where D (¢7') =
D,(¢ ") Ds(g™"). Moreover, C (¢g~') and Dg(¢™!) are
monic and stably invertible, while the polynomial
D,(¢7") has zeros on the unit circle O

Assumption A3 implies that e.g. random walks, inte-
grated random walks and filtered random walk mod-
els can be considered, but that the unstable dynamics
D, (g7') must then affect all the elements of h;. We
can now present the optimal learning filter.

Theorem 1: Under Assumptions A1-A3, the stable
and causal learning filter minimizing the asymptotic
parameter covariance matrix (6) is

hopre =L fi=D;'QB'D,Rf, , (18)

where the polynomial matrix B(¢™') of dimension
np|ny, and degree ng = max(ne,np) is the stable left
spectral factor obtained from

BB, =CR.C.+DR'R,R'D, . (19)
The unique solution to the Diophantine equation
qu R.C. = Qkﬂ* +qD Ly, (20)

provides polynomial matrices Q (¢ ') and L. (g) of
dimension ny|np, with generic degrees

ne = max(ne—k,np,—1) , n, =max(ns+k,ng)—1

(21)
respectively. The estimation error Et+k|t will be sta-
tionary with finite covariance matrix and zero mean.
Proof: See Sternad et.al. (2000), where a generaliza-
tion to colored gradient noise is also presented O

Under Assumptions A1-A3, the (generalized) innova-
tions model of f; = Rh; + ¢ can be expressed as

fe =RD ' (¢7")Ba e (22)

where ¢; is the white zero mean innovation sequence
with unit covariance matrix. By defining the signal

_ 1

>

= B g HDs(@HR i, (23)

Figure 3: The Wiener optimized tracking algorithm.

the adaptation law (18) can be realized as in Fig. 3.
The polynomial matrix Q;(¢”") can be obtained from
closed-form expressions, see Sternad et.al. (2000). In

particular, Q,(¢7") = ¢(B(¢™") — D (¢7*)Bo), with So
being the leading coefficient matrix of B3(q™!).

With this expression and (11),(18), the Wiener op-
timized filter matrix My(¢~") in (8) can for white
gradient noise be shown to be given by

MP Y = D e HQua VB 'R™' . (24)

The filter has the inverse regressor covariance matrix
R~ as a right factor. The optimized tracker can
thus be seen as a generalization of the LMS-Newton
adaptation law (Widrow and Stearns 1985).

5. ITERATIVE WIENER DESIGN

For slow time-variations, the feedback noise Ztilﬂt_l
is negligible, so we may perform a one-shot design by
assuming 7; = gvy. Otherwise, the properties of 7,
depend on L1(¢g”") via (15). The multiplication by
Z; in (15), see also Fig. 1, acts as a scrambler. For
FIR models (1) with white regressors, it will reduce
the correlation between the feedback noise and Et“_l.
Assumption A2 will then hold for white regressor ele-
ments and a design for fast parameter variations can
be obtained iteratively. (See Sternad et.al. (2000) for
a design example.)

1. Design a one-step predictor for slow variations, i.e.
use Ry, = E{pvv; ¢ } to design L1(¢™"). Verify that
the closed loop around L£1(¢') of Fig. 1 is stable. If
not, scale up R,, to decrease the gain of L£q(g™").

2. Based on a simulation of ¢y, vy, hy and of izt|t_1,
estimate R, from 7; = @es — R(hy — Bt\t—l) (see
(10),(16)), by using sample averages over 7j;.

3. Design a new estimator £1(g™").

Repeat 2. and 3. until the difference in consecutive
hit1)s becomes small. Then, design Ly (q7?1) for lag k.

It will be possible to find an initial stable solution
under mild conditions. If #(¢™') is stable, then
L1(w) = 0V w when the assumed noise power is in-
creased. If Z; has bounded elements, then the small
gain theorem implies that the closed loop of Fig. 1



can be stabilized by assuming a sufficiently high noise
power in the design of £1(¢7").

6. ROBUST WIENER DESIGN

The statistics of time-varying parameters will rarely
be exactly known. Small uncertainties can be disre-
garded, but large uncertainties should be taken into
account in a model-based design.

One can then use a gain scheduling approach or a
minimax robust design, as investigated in Lindbom
et.al. 2000b). Another alternative is to optimize the
parameter error covariance on average over a set of
possible dynamics for h;. Such an approach to the de-
sign of robust Wiener filters was originally suggested
by Speyer and Gustafsson (1975) The minimization of
averaged quadratic criteria has been developed into a
systematic design methodology in Sternad and Ahlén
(1993), Ohrn et.al. (1995) and Ohrn (1996) and it
can be applied directly here. Assume that a set of hy-
permodels is described by the probabilistic extended
design model

he = (H(a™ ")+ AH(g™)) e - (25)

Here, H°(¢™') is the nominal model, while the error
model A7 (¢~ ') represents the set of possible devi-
ations, described by a set of time-invariant transfer
functions, parametrized by random coefficients.

Define the operation E(-) as an average over all ran-
dom coeflicients parameterizing the error model. We
assume that

E(AH(@ ™) =0

so the nominal model is defined as being the average
model of the set. For a set of models (25), it will be
possible to minimize the average of the asymptotic
tracking error covariance matrix (6)

= A = (..
Py £ E(lim Pyy) (26)
if A3 is substituted by the following assumption:

Assumption A4: The set of hypermodels can be
represented by

1

ht = ﬁ
Dy(q7)

(Hi@ ) +AH (¢ ))er , (27)

where the known polynomial D, (z') has zeros on
|2] = 1, H2(g ") is a known, stable and stably in-
vertible rational matrix and A% (¢ ') is a set of sta-
ble random rational matrices that are independent of
e, with zero mean and known second order statistics.
The noise e; is white, with nonsingular covariance ma-
trix R, = E {e;e}} O

The known polynomial D, (z~') must thus include all
marginally stable factors of transfer function denomi-
nators appearing in the set (25). If the marginally sta-
ble modes are unknown, there exists no single learn-
ing filter which can provide a finite average covariance
matrix Py,.

Under Assumptions A1,A2 and A4, a robust design
can be obtained by a modification of Theorem 1.! The
key modification of the derivation in Sternad et.al.
(2000), is the use of an averaged measurement spec-
trum

E(¢;) 2ER(H° + AH)R, (H° + AH),R) + R,
(28)
Introduce the averaged hypermodel D _l(g_l)é’ ("),
with D (¢7") = Dy(¢7")D s(¢7") where D 4(¢~*) and
C (¢7Y) are assumed stable. It is a (generalized) in-
novation description, having spectral density equal to
that of the average of the set (25),
-1

'C¢C.D. 2 EFH° + AH)R. (H° + AH),
1o 1

= — (HIRAHS, + E(AHRAH,)) =
D D

u u*

(29)

D

By defining an averaged spectral factorization
BB, =CC.+DR'R,R'D.,, (30
the averaged measurement spectrum becomes
E(¢;)=RD BB.D,'R .

The _square polynomial matrix ,B(q‘l) is monic and
det B(z7!) is stable since the right hand sides of
(28)-(30) are nonsingular on the unit circle, due to
the assumed non-singularity of R, and stability of
C (¢ "). The Diophantine equation (20) is in a sim-
ilar way modified by substituting C (g=1)C ,(g) for
C (¢ )R.C .(¢q) and D (¢~') for D (¢~ '):

¢*CC.=QB. +qD Ly . (31)
The averaged robust design is summarized as follows:

Theorem 2: For the model set (25), with specified
second order moments, a learning filter can be de-
signed under Assumptions Al, A2 and A4 which min-
imizes the average covariance matrix (26), by obtain-
ing a polynomial spectral factor B(qg~ ') from (30) and
a polynomial matrix Q,(¢~"), together with Ly.(q),
as the unique solution of the Diophantine equation
(31). The robust learning filter is then given by

D,R! (32)
O
At frequencies where E (AH (e 7)R. A, (e/¥)) is

More general cases are covered by Theorem 4.1 in Ohrn
(1996) which take into account also uncertainty in the trans-
ducer, here corresponding to R, and in the noise model.




significant as compared to the nominal spectral den-
sity H°(e™7“)R.H2(e?*), the averaged hypermodel
(29) will have higher gain than the nominal hyper-
model. At such frequencies, the principal gains of the
robust learning filter (32) will be larger than the prin-
cipal gains of the nominal filter (18), since the average
signal-to-noise ratio is higher than the nominal SNR.
Note that only second order moments

E (A (g7 )RAH ()

need to be specified, since the type of distribution,
and higher order moments, will not affect the de-
sign. The required function on the right-hand side
of (29) can be obtained by averaging over hypermod-
els: Draw n samples from the set of their stable parts
{#Ms;, =H], +AH,, }i - The corresponding spectra
(or covariance functions) can then be averaged to ob-
tain (28),(29).

7. EXAMPLE: TRACKING OF IS-136 CHANNELS
WITH UNCERTAIN DOPPLER ESTIMATES

In IS-136 mobile radio systems, the symbol-spaced
sampled baseband channels can be described by FIR
filters with one or two time-varying taps

Yt = hogus + hague—1 + v = @i hy + g, (33)

where y; is the received scalar complex-valued sig-
nal while v; is noise and co-channel interference. The
transmitted symbols u; are here assumed known, al-
though they would in reality partly be estimated by
the receiver. They have variance o2 and are mutually
uncorrelated, so R = GZIZ is known exactly. For a
mobile terminal, the channel coefficients ho + and hq ¢
will be subject to fading characterized by the maxi-
mum Doppler frequency wp = 2mw,/\, where v, de-
notes the speed of the mobile and X is the carrier
wavelength, which in the following is assumed to be
16cm (~1900 MHz). For the purpose of our investiga-
tion, we shall use Jakes’ (1974) fading model, which
assumes an infinite number of nearby scatterers and is
parametrized by wp. When the vehicle velocity is con-
stant, the channel coefficient vector hy = (hos h1¢)T
will then be a stationary, complex circular Gaussian
process with zero mean and covariance function

rh() = E{hh;_;} =RpJo(pl) £=0,£1--- .
(34)
Here, R), 2 E {hihf}, Jo(-) denotes the Bessel func-
tion of the first kind and zero order and Q = T,
Qp = wpT. The symbol time T is 41.15us in IS-136.
This yields the classical Rayleigh fading spectrum

—2 R Ql < Qp
@)= | VA 9 (35)
0 1] > Qyp .

When €y, is known, the model (4), (17) can be ad-
justed to the autocorrelation function (34). Perfect

adjustment would require models of infinite degree,
but good performance can be obtained with simple
models. In the following, third order autoregressive
models (AR3 models) (1/D(g!))Iy will be fitted to
the relevant covariance function.

The maximum normalized Doppler frequency €y can
be estimated from data, but such estimates will be
imperfect. We therefore here investigate the design of
an algorithm for tracking h; that is robustified against
uncertainties in the Doppler estimate. The Doppler
spectrum averaged with respect to the uncertain 2,
constitutes our averaged model (29):

A

G 2 Bop(0n(@) = [ on(@p(00) % .

(36)
Here, p(2p) denotes the assumed probability den-
sity function of the normalized maximum Doppler fre-
quency Q. When assuming Jakes model giving (34),
the covariance function corresponding to (36) is

A

Fh (f) = i Rh Jo (QD f)p(QD) dQD

—Tm

(37)

In Figure 4, an element of the averaged covariance
function (37) is displayed for a uniformly distributed
probability density function, with different uncer-
tainty regions. A wider uncertainty region will in-
crease the damping of the averaged covariance func-
tion, yielding a spectrum with a less pronounced peak.
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Figure 4: Auto-covariance function r4(¢) = Jo(Qpf)
with Qp = 0.02 (solid) and the averaged covariance func-
tion (37), with Qp € UJ[0.01 0.03] (dotted) and Qp €
U[0.015 0.025] (dashed).

A (stable) averaged AR model can now be adjusted
to 7, (¢) (Lindbom et.al. 2000b) and a robust tracking
algorithm is then designed, as outlined in Section 6,
using this model?. Assume the signal-to-noise ratio to
be 15dB and let Ry, = I,. Use a nominal 22 = 0.02,
while the true Doppler frequency is varied. A nomi-
nal Wiener design is now performed by adjusting an
ARj3 model to (34) and then using Theorem 1 once,
to design an algorithm that minimizes the one-step
prediction error. (Iterations are not needed in this
case.) Then, robust designs are performed based on

2In the work Lin et. al. (1995), a windowed LS algorithm
was designed to take uncertainties about the Doppler frequency
into account. The averaged covariance function (37) was there
utilized in the choice of the adaptation window.



AR3 models adjusted to (37).

The effect of using the robust designs is presented in
Figure 5, where it is compared to the nominal de-
sign. We also compare to a perfectly matched ARs
model-based design, based on the correct Doppler fre-
quency. To compute the one-step prediction tracking
MSE tr Py, we use a novel analytical expression which
is exactly valid for two-tap FIR channels with white
inputs, and which gives very good approximations for
higher order FIR models. It is derived in Ahlén et.al.
(2000), and utilized extensively also in Lindbom et.al.
(2000b). The averaged AR3 model is matched to the
covariance functions described by the dotted and the
dashed lines in Figure 4, for lags < 200. The left
hand diagram of Figure 5 reflects the performance
when the uncertainty level of 0 is assumed moder-
ate: Qp € UJ[0.015 0.025], whereas the right hand
diagram displays the performance for a larger uncer-
tainty interval, 0, € U[0.01 0.03].

When the Doppler frequency is known, the Wiener
design (dash-dotted) is much superior to LMS track-
ing by (9) (dotted). Its performance is almost equal
to that of a time-varying Kalman predictor designed
for the same AR3 model. For uncertain Q) the aver-
aged robust design improves both the worst-case per-
formance and the average performance significantly.
The average MSE performance (area under solid line)
is 33% higher with an averaged robust design, than for
a known ), (area under dash-dotted line). It would
be 80% higher for the nominal design (dashed). The
effect is significant also for the more moderate uncer-
tainties (left-hand diagram).

trP i trP 1
0.02 0.04
1.
/
0.015 . 0.03 K
w Pt W /
2 00— 2002 y
0.005 N ——
0 0
0.015 0.02 0.025 001 0015 002 0025 003
QD QD
Figure 5: One-step prediction MSE performance of

Wiener designs based on ARg3 fading models: Averaged
robust (solid), nominal design for Qp = 0.02 (dashed)
and optimally matched to known model (dash-dotted) .
The assumed uncertainty Qp € U[0.015 0.025] (left) and
Qp € U[0.01 0.03] (right). Also shown is an LMS design
tuned for a known Qp (upper dotted in right figure).

As a generalization of the design above, deviations
from the idealized Jakes’ model can be introduced.
They can be regarded as unstructured uncertainty,
which could also be incorporated in an averaged ro-
bust design, using methods described in Sternad and
Ahlén (1993) and Ohrn (1996).
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