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Abstract

We present a method for optimizing adaptation laws
that are generalizations of the LMS algorithm. The pro-
posed technique has been applied successfully for design-
ing estimators of rapidly time-varying mobile radio chan-
nels. The estimators apply time-invariant filtering on the
instantaneous gradient. Time-varying parameters of lin-
ear regression models are estimated in situations where
the regressors are stationary or have slowly time-varying
properties. The structure and gains of these adaptation
laws are optimized in MSE for time-variations modeled
as correlated stochastic processes. The aim is to system-
atically use such prior information to provide filtering,
prediction or fixed lag smoothing estimates for arbitrary
lags. Our design method is based on a novel transforma-
tion that recasts the adaptation problem into a Wiener
filter design problem. The filter works in open loop for
slow parameter variations while a time-varying closed
loop is important for fast variations. In closed loop, the
filter design is performed iteratively. The solution at
one iteration can be obtained by a bilateral Diophan-
tine polynomial matrix equation and a spectral factor-
ization. For white noise, the Diophantine equation has
a closed-form solution. When one filter is known, a set
of predictors and smoothers, up to a predefined predic-
tion horizon or smoothing lag, is obtained by analytical
expressions.

1 Introduction

Adaptation algorithms that estimate time-varying pa-
rameters of linear regression models are fundamental
tools in signal processing, control and digital commu-
nication. When prior information about the statistics of
the variations are available, Kalman estimators minimize
the tracking mean square error (MSE) among all linear
estimators. Motivated by the need to develop channel
estimators of low computational complexity for use in
mobile radio systems, we have recently proposed a class
of adaptation laws that for channel tracking attain close
to the optimal Kalman performance, yet require a com-
putational complexity close to that of LMS [1, 2, 11, 18].
An early version of the proposed algorithm has success-
fully been used on ANSI-136 channels [10, 13], and a case

study on this application can be found in [19]. Instead
of a time-varying gain computed via a Riccati update,
these algorithms use a time-invariant filter that operates
on the instantaneous gradient vector. The present paper
discusses the Hy design of such filters from a control per-
spective. Optimization of the adaptation law then cor-
responds to LQG or H, optimization of a time-invariant
feedback regulator for a time-varying plant. Our track-
ing design solves this problem by a loop transformation,
explained in Section 3, followed by the iterative use of
an open-loop Wiener filter design, outlined in Section 4.
The Wiener solution is presented in polynomial form,
which provides important structural insights.

Notation: For polynomial matrices P(¢~') and rational
matrices R(g™"), conjugate matrices P,(q) or R.(q)
are obtained by conjugating coefficients, transposing
and substituting the forward shift operator ¢ for the
backward shift operator ¢~!. The arguments q or ¢!
are sometimes omitted. Scalar polynomials P(q™') are
denoted by non-boldface capitals. Square polynomial
matrices P(¢™') will be called stable if all zeros of
det P(z™") are located in |z| < 1 and marginally stable
if these zeros are located in |z] < 1.

2 OQOutline of the Problem

Consider discrete-time and possibly complex-valued
measurements generated by a linear regression

yr = prhe + vy, (1)

where y; is the measured signal with n, elements, v;
is a noise while @} is a ny|n, regression matrix, which
is known at time ¢. The regressors are assumed to be
persistently exciting, so that their covariance matrix
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is nonsingular. Furthermore, R is here assumed con-
stant and known, while in practice it may be slowly
time-varying. The linear regression could represent a
FIR model or an orthogonal series expansion with fixed
poles, such as a Laguerre or Kautz model. However,
AR- and ARX models are here excluded, since the use
of old measurements as regressors could make ¢; highly
nonstationary when h; is rapidly time-varying. The aim



is to estimate the parameter vector
T
hi = (hot - hnp—1,t)” (3)

assuming ny to be known. The model structure is thus
assumed to include the true system. With time-varying
parameters, we face a parameter tracking problem. Mod-
els that constrain the assumed variation of h;, some-
times called hypermodels [3], must then be introduced,
since we would otherwise have unknowns hq, hs ... with
more elements than the available measurements y1,ys2 . ..
whenever n, < np. A commonly used alternative is to
introduce a local polynomial approximation [4, 14, 15]

hy=> bit! |, te[l,N] (4)
j=0

where the n + 1 vectors b; are to be estimated over a
time window of length N. The resulting least squares
problem for the model (1),(4) has an adequate number
of equations if Nny, > (n + 1)n, but high polynomial
degrees n will lead to ill-conditioned and noise-sensitive
solutions, due to the wide magnitude range of the regres-
sors. Less numerically sensitive and more flexible designs
are obtained by introducing stochastic hypermodels.

We here consider linear time-invariant stochastic models
hy = Mg Ve (5)

where e; is white noise with covariance matrix R, and
H(g™") is a np|ny matrix of stable or marginally stable
transfer operators. Let
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hisrie = Pevk — Pegrpe s (6)

where ﬂt+k‘t is an estimate of hy4j obtained at time ¢ by
filtering (k = 0), prediction (k > 0) or fixed lag smooth-
ing (k < 0). Kalman trackers can be designed based on
state-space realizations of (5), with (1) representing the
measurement equation. They are the linear estimators
that minimizes the parameter error covariance matrix
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Pk,t = E[ht+k\tht+k|t] ) (7)

where the expectation is taken with respect to e; in (5)
and v; in (1). However, since ¢} in (1) is time-varying,
the Kalman estimator will not converge to steady state.
A time-varying gain matrix has to be updated via the
Riccati equation, so the estimator will have relatively
high computational complexity. For scalar y;, Kalman
predictors and filters can be represented by

hovkie = Mig(a Do (8)

where My, ; is a rational filter with time-varying coefhi-
cients, while

€t = Yt — SO?ht\t—l >
and ¢4 is the negative instantaneous gradient of |g;|?
with respect to hy;_1.

A class of adaptation laws related to (8) but with much
lower complexity is obtained by using pre-designed lin-
ear time-invariant filters that operate on ;. The aim
is to minimize the tracking error covariance matrix (7)
asymptotically for ¢ — oo (after the initial transients),
for arbitrary k. The filter should be designed to pro-
vide estimates with an appropriate amount of coupling
and inertia. Based on (1),(5), the time-invariant filter
My (g7 in

Yt — w:ﬁt\t—l 9)
M (g et (10)

gy =
ht+k|t =

is thus to be optimized under various constraints and
assumptions. The LMS algorithm
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ht+1|t = 1_7(1_11 PYer (11)
where g > 0 is a scalar gain, constitutes a simple special
case. However, LMS algorithms can be shown to have
optimal structure only when the parameters h; behave as
uncorrelated random walks and the regressor covariance
matrix (2) is diagonal [18]. The general structure (10)
provides considerably more flexibility.
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Figure 1: The one-step predictor could be seen as a linear
time-invariant feedback regulator for a time-varying system.
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Figure 2: When ¢:¢; is approximated by R, the design of
M (q™1) corresponds to the design of a minimum variance
feedback regulator operating on a time-invariant system with
measurement noise and a colored output disturbance —h;.

For any desired k, a one-step predictor Mi(g™") must
also be designed, due to the presence of hy;_; in (9). By
(1), (9) and (10), this prediction problem corresponds to
the design of a time-invariant feedback controller for a
time-varying system, as illustrated by Figure 1. One
approximate solution could be obtained by substituting
the block @} by its time-invariant average R. We then
have the minimum variance feedback regulator problem
of Figure 2, where —ﬁt|t,1 is the vector to be controlled,
—hy modeled by (5) plays the role of an output distur-
bance, R is a sensor matrix and —v; is measurement



noise. This problem can be solved by state space LQG
design or by polynomial solutions [7, 9, 17].

However, we have shown in [1] that the error resulting
from basing an MSE-optimal design on the approxima-
tion g} = R would be negligible only if the parameter
variations are slow'. If this is not the case, a design
based on Figure 2 will be misleading and provide a filter
with too high gain. The result may be instability of the
tracking loop. In the next section we introduce a loop
transformation that moves time-varying feedback effects
to an outer perturbation loop. This perturbation is then
taken into account by iterative filter adjustment.

3 The Loop Transformation

The algorithm (10) can be expressed as a stable and
causal filter, denoted the learning filter Lr(q™"), that

operates on the signal f; 2 e + Rﬁt‘t,l. Since

hyji—1 = ¢ "Ma(g Dper

A

here = Mi(@™)T+¢ " RM(a)) T e = Lia ™) fe -

(12)
Consider the signal prediction error (9) and insert (1)
describing y;, to obtain
o1 (hy — i"t\tfl) + v
SOtSOZiLﬂtfl + Qe - (13)

gy =

PYier =

Adding and subtracting Rilt\t_1 on the right-hand side
of (13) gives

pree = Rhyo1 + (pro; — Ry + v . (14)

Define
Z = iR (15)
m = Zihyi—1 + pror (16)

which are called the autocorrelation matriz noise [6] and
the gradient noise, respectively. The signal f; , to be
called the fictitious measurement, can then by (14), (15)
and (16) be expressed as

fi =Rhy + Ztﬁthﬁfl + g =Rhy + 1 (17)

so Figure 1 can now be transformed into Figure 3. The
design problem for our adaptation law has now been
transformed into a Wiener filter design problem for Ly,
where Rh; is a rotated signal while 7; plays the role
of noise. The gradient noise 7, is affected by the term
Ztﬁt‘t_l, here called the feedback noise. It is shown in
[1] that the feedback noise is negligible for slow varia-
tions, so the learning filter will then operate essentially
in open loop, with 1; =~ @ v;. The learning filter can

1See [12] and [1, 11] for quantifications of the degree of nonsta-
tionarity and the property of slow variations.

then be designed directly as a Wiener filter, see Figure 4
and Section 3. With Ztﬁt“_l negligible, the approxima-
tion @t@:ﬁt\t—l ~ Rﬁt‘t,l is valid by (15) and a Wiener
design of L£; is just another way of designing the closed
loop of Figure 2. Stability and convergence in MSE is
then guaranteed by stability of the learning filter.?
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Figure 3: The one-step prediction learning filter operates in
open loop for slow variations, when Zsz_l can be neglected.
For fast variations, the feedback noise Ztﬁm_l has to be
taken into account.

Figure 4: The filter design problem. The vector h;yy is to be
estimated from measurements f;, such that the steady state
tracking error covariance matrix is minimized.

For fast variations, the feedback may endanger stability.
A sufficient but conservative condition for stability for a
given design is provided by the small gain theorem [21]:
If £,Z; is causal and Ly-stable, stability is preserved if

la™" £1Zihy—llp < Vhappally 5 v<1 . (18)

Although the feedback noise will be dependent on old es-
timation errors, the correlation between the innovation
sequence of n; and previous estimation errors b, _;,7 <
t will in general be low. The reason is that multiplication
by the matrix Z; acts as a scrambler. The scrambling
becomes more efficient for more rapidly time-varying re-
gressor elements. When the correlation can be neglected,
an optimal linear filter design can be performed as an
open loop Wiener design, since higher order statistical
dependencies will not affect the MSE-optimal linear de-
sign. However, the covariance matrix of the total gra-
dient noise 7, including the feedback noise, must be
estimated iteratively, since the variance of the feedback
noise will depend on the learning filter, which generates
the estimation error Bt|t71-

2For the LMS algorithm (11), stability of the learning filter (12)
corresponds to the condition 0 < g < 2/Amax for convergence in
the mean [8], where Amax is the largest eigenvalue of R.



An iterative design may proceed as follows.

1. Perform a one-step predictor design for slow time-
variations, i.e. use 1; = @v; to design L£1(¢7 ") by
Theorem 1 below. Verify that the closed loop of
Figure 3 is stable, so that the resulting error h;;_; is
stationary. If not, scale up the assumed covariance
function of 1; to decrease the gain of £1(¢™').

2. Based on a long simulation of h; = H(g e, and
on the corresponding estimate h;yy; = £1 (@Y fs,
obtain an estimated gradient noise time series

Nt = fi — Rhy = preg — R(hy — ilt|t—1) . (19)

Obtain an estimate of the covariance function of 7
by using sample averages over ;.3

3. Design a new estimator £1(q~!) by Theorem 1.

Repeat steps 2. and 3. until the difference in consecu-
tive estimates hyy1|; becomes small. Then, construct an
estimator for the desired lag k. For more details and a
design example, see Section V of [18].

4 Learning Filter Optimization

The transfer operator L£;(q~!) will now be adjusted to
minimize (7) for t =& oo, when H(g™') in (5) is assumed
known and the properties of 7; are assumed given. The
learning filter is designed under the constraint of stabil-
ity, under the following assumptions:

Assumption Al. The sequence {¢;} } is stationary and
known up to time ¢, with a known nonsingular autocor-
relation matrix R O
Assumption A2: The gradient noise 7; is station-
ary with zero mean and is modeled by a known vector
ARMA process

1
- N(¢")

n Mg Y (20)

where M is a np|ny, polynomial matrix of degree ny,, N
is a stable polynomial of degree ny, while Evyyf =1 O
Assumption A3: The correlation of the innovation
sequence vy of the gradient noise with h;_; and with
ht—z’|t—z’—1;i Z 0is neghglble O
Assumption A4. The linear regression coefficients are
described by a stochastic process

he=H@ Nee=D (@) 'Cla e , (21)

where e; is white, stationary and zero mean with non-
singular covariance matrix R, and

D(') = Du(@")Ds(a™?) . (22)

3The gradient noise is often white, which simplifies the design.

Above, the polynomial matrix C (¢7') of degree n. is
assumed monic and stable, D (¢7!) is a monic polyno-
mial matrix with degree n,, Dy,(¢™') is a polynomial
with zeros on |z] = 1 and D 4(¢™") is a stable polyno-
mial matrix O

Assumption A4 implies that e.g. random walks, inte-
grated random walks and filtered random walk mod-
els can be considered, but that the unstable dynamics
D, (¢ ") must then affect all the elements of h;. We are
now ready to state the following result.

Theorem 1: The optimal learning filter. Under As-
sumptions A1-A4, the stable and causal learning filter
minimizing the asymptotic covariance matrix (7) is

ft = R}Alt|t,1 + per = Rh; + yi (23)

hopre =L fi=D;'QB*ND ,R™'f, , (24)

where the polynomial matrix B(¢™") of dimension ny|ny,
and degree ng = max(ng + N, np + nar) is the stable
spectral factor obtained from

BB, =CR,C,NN,+ DR 'MM,R'D, . (25)

The unique solution to the bilateral Diophantine equa-
tion
qu R.C N, = Q8 + gD Ly. (26)

provides polynomial matrices Q(¢ ') and Ly.(q) of di-
mension ny|np, with generic degrees

ne = max(ng—k,np—1) , n, =max(nc+ny+k,ng)—1
(27)
respectively. The estimation error ﬁt+k|t will be station-
ary with finite covariance matrix and zero mean.
Proof: See [18] or [11] O

Note that only two design equations (25), (26) are re-
quired. This would be far from obvious if the general
solutions of [7, 9] were applied to the problem of Fig-
ure 2. The Diophantine equation (26) is guaranteed to
be solvable also for marginally stable D (27'). Under
Assumption A4, C is assumed stable and R, has full
rank, so C (27')R.C (z) will have full rank on |z| = 1.
Therefore, the spectral factorization (25) is guaranteed
to deliver a spectral factor 8 with a leading matrix 3,
of full rank and a stable and causal inverse.

The inverse of the regressor covariance matrix will ap-
pear as a right factor in all learning filters (24). If R is
unknown, its inverse R™! can be estimated recursively
with well-known methods at the price of increasing the
complexity to a level similar to that of RLS. It is impor-
tant to note that the time-scales used in the estimation of
h; and in the estimation of the regressor covariance can
and should be separated. Since R™! is assumed constant
or perhaps slowly time-varying, a long data window can



be used for estimating it accurately even when the vari-
ations of h; are fast.

From (23) (20) and (21), the spectral density of the fic-
titious signal f; is, under Assumption A3, given by

¢; =RD 'CR.C.D'R+

MM,
NN,

= RD'N"'88,N;'D'R (28)

where (25) was used in the last equality. The innovations
representation of f; is thus given by

fi=RD™'N~'Be; & ¢ =B 'NDR™'f; (29)

where the innovation sequence ¢; is white, with zero
mean and unit covariance matrix. When D (¢7') has
zeros on the unit circle, (29) corresponds to a general-
ized innovation model [16]. By defining the signal

@2 po—pe = AINDRT (30)
the adaptation law (23), (24) can be expressed as
&t =Yt — Sorﬁt\tfl (31)
& =B"'ND (R "pie; + hyy1) (32)
hovke = D7'Qu& - (33)

The product R 1y, can be updated efficiently, with a
computational complexity proportional to ny, for scalar
FIR models with autoregressive inputs [5].

Corollary 1. The Wiener optimized filter M. The
estimator (10) optimized by Theorem 1 is
hivre = Mi(@ Do = D J'QyRR ey (34)

where the causal rational matrix R(q™") is given by
1

R=[B-¢'NQ,] 'ND,=——-X,'ND,
Du(q7)
(35)
where X ;(¢7!) is a polynomial matrix which solves
B-q¢'Q,N=D,X, . (36)

Proof. Multiply both sides of (32) from the left by
3 and then substitute the expression for q_lht+1‘t, ob-
tained from (33) with & = 1, into (32). We obtain

B& = ND ,R 'piee +q 'NQ & .

Thus,

€ = RRil(,DtEt .
The use of this expression in (33) gives (34)-(35). The
equation (36) is derived in Appendix A of [18] |

Note that R™! will always be a right factor of the op-
timal My, and that D ;' will be a left factor. While
the learning filter L£;(¢™') must be stable, the matrix
M (¢ !) in Figure 1 need not be stable, since it works
within a feedback loop. In fact, by the last expression
of (35), D! will be present in all elements of R in ac-
cordance with the internal model principle.

5 Recursive and Analytical Solu-

tions to the Wiener Equations
The solution for ¥ = 1 will always be required. When
several estimation horizons are of interest, we need to
solve the equations in Theorem 1 for one value of k only.

We believe this property of Diophantine equations used
in Wiener filter design to be of independent interest.

Corollary 2. Let Q,(¢7") and Lg.(q) solve (26) for lag
k, having leading coefficients Qg and Lg*. Then,

Qun™) = ¢(Qua™H-D@hHal) (67

Liy1.(q) = qLia(q) + Q5B.(0) (38)
solve the Diophantine equation (26) for lag k£ + 1 and

Qi_1a™) =q¢ Q@) + D (¢ HLE (B5) T (39)

Lio1a(q) = 7" (Die(a) — LE*(3)) 'B.(@)  (40)
constitute the solution to (26) for lag k — 1, where 35 is
the leading coeflicient of 5.(q).

Proof: It follows from the Diophantine equation (26)
that @, and Ly 1. should satisfy

¢"t'C R,C.N, = Q1B + 4D Ly - (41)
Multiplying (41) by ¢~! and using (37) yields
qu R.C.N, = (Qk -D Qg)ﬁ* +D Lk+1*

= QuB.+ D (Lt — Q§B,) -

The use of (38) reduces this equation to the Diophan-
tine equation for lag k, which is by definition satisfied by
Q1 Y), Ly (q). Equations (39) and (40) are verified in
the same way. |

Remark. Note that since D is monic, the leading coef-
ficient matrix of the right hand side of (37) and of (40)
will cancel. No positive powers of ¢ are be present in
Q. 11(¢7") and no negative powers of ¢ will be present
in Li_14(q)- O

Corollary 3. For white gradient noise 7, with covari-
ance matrix R,, the Diophantine equation (26) has a
closed-form solution for k£ = 1, given by

Q,(¢™") = qBa")—D (g "by) (42)
Liq) = BoB.(@) —R'R,R'D.(q) (43)

where f,, is the leading coefficient matrix of B(g™).

Proof. With MM, = R, and N =1, (25) becomes
BB, =CR.C.+DR'R,R7'D,
and with £k =1 and N = 1, the equation (26) becomes
(CR.C.=Q,B,+qDL,. . (44)

By substituting the expressions (42) and (43) into the
right hand side of (44), the result is verified O



6 Conclusions

We have outlined the design of a class of adaptation
laws which are generalizations of LMS. Compared to
Kalman tracking of linear regression parameters, a main
advantage with the proposed class of algoritms is their
lower computational complexity. Another advantage is
that it becomes more straightforward to design fixed-
lag smoothing estimators. A disadvantage is that our
Wiener design is a steady-state solution, which could
lead to worse transient properties than for a Kalman es-
timator. Improved transients could be obtained by using
an increased adaptation gain at the beginning of the time
series, which then decays to the steady-state value.

The hypermodel (21) is in practice never exactly known,
but it may be known to belong to a set of possible mod-
els. A robust design which minimizes the average perfor-
mance can then be obtained by averaging the hypermod-
els in the frequency domain and performing the design
for this averaged model. See [22] for general robust de-
sign methods, [11, 20] for uncertain hypermodels and
[20] for a specialization to fading mobile radio channels
parametrized by uncertain Doppler frequencies.
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