ITERATIVE WIENER DESIGN OF ADAPTATION LAWS WITH CONSTANT GAINS

Anders Ahlén, Mikael Sternad and Lars Lindbom

Signals and Systems, Uppsala University, PO Box 528, SE-75120, Uppsala, Sweden.
{aa,ms}@signal.uu.se, Lars.Lindbom@ks.ericsson.se

Abstract: We present a method for optimizing adaptation
laws that are generalizations of the LMS algorithm. Time-
varying parameters of linear regression models are estimated
in situations where the regressors are stationary or have slow-
ly time-varying properties. The parameter variations are
modeled as ARIMA-processes and the aim is to use such
prior information to provide high performance filtering, pre-
diction or fixed lag smoothing estimates for arbitrary lags.
The method is based on a novel signal transformation that
recasts the algorithm design problem into a Wiener design.

1. INTRODUCTION

Adaptation algorithms that estimate time-varying parame-
ters of linear regression models are fundamental tools in
signal processing, control and digital communication [1].
When the statistics of the parameter variations are known,
Kalman estimators are the optimal linear algorithms. How-
ever, their computational complexity is sometimes deemed
unacceptable. Motivated by the required low complexity of
channel estimators in mobile radio systems, we have pro-
posed a class of adaptation laws that attain close to the op-
timal Kalman performance, at a computational complexity
close to that of LMS [2, 3, 4]. An early version has suc-
cessfully been used on D-AMPS 1900 channels [5, 6], and
a case study on this application is presented in [7].

Design of a related class of constant-gain algorithms
has been investigated by Benveniste and co-workers [8] for
slowly varying regression parameters. We here outline a
method that is effective also for tracking fast variations.

Notation: Here, R(g7'), R(¢”!) and R(q™") denote
polynomials, polynomial matrices and causal rational ma-
trices, respectively, in the backward shift operator ¢~ 1.

2. OUTLINE OF THE PROBLEM

Consider discrete-time and possibly complex-valued mea-
surements generated by a linear regression

Yy =ihe +vp H

where y; is the measured signal with n, elements, v; is a
noise vector while ¢} is an ny|n, regression matrix, which
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is known at discrete time ¢. We assume the regressors to be
persistently exciting, so that their covariance matrix

R £ Eopup! 2

is nonsingular. Furthermore, R is here assumed constant
and known, while in practice it may be slowly time-varying.
The aim is to estimate the time varying parameter vector

hnh-—l,t)T ? (3)

when the order ny, is known. Models describing the varia-
tion of hy are sometimes called hypermodels [8]. We will
here consider linear time-invariant stochastic models

ht = (hO,t . e

he = H(g Ve, , )

where e; is white noise with covariance matrix R, and where
H(g™") is an ny|np, matrix of stable or marginally stable
transfer operators. Let the tracking error be denoted by

3 A .
Perkie = Perr — B &)

where ﬁt+k[t is an estimate of A, obtained at time ¢ by
filtering (k = 0), prediction (¥ > 0) or fixed lag smoothing
(k < 0). Kalman estimators, based on (1) and on state-space
realizations of (4), are the linear estimators that minimize
the error covariance matrix

A 7 7. %
Pre = Eht+k|tht+k|t > (6)

where the expectation is with respect to e; and v;. Since
©f s time-varying, the Kalman gains will not converge to a
steady state solution, so Riccati updates are required.

We here consider a class of adaptation laws obtained by
using pre-designed linear time-invariant filters M (g™!)

& = ye— @iy Q)
Mg e (3

that operate on &4, which is the negative instantaneous
gradient of |¢¢|* with respect to h¢j;—;. The LMS algorithm

heprp =

m

ibt+1|t = 1 | K7 TP ®



where > 0 is a scalar gain, constitutes a simple special
case of the general structure (7),(8).

The rational matrix M, can be selected to asymptoti-
cally minimize the tracking error covariance matrix (6) un-
der various constraints and assumptions. Note that for any
desired &, a one-step predictor M, (¢™*) must also be de-
signed, due to the presence of Ay in (7).

3. THE LOOP TRANSFORMATION

The algorithm (7),(8) can be expressed as a stable and causal
filter, denoted the learning filter L1(g™"), that operates on a
signal vector

fi 2 e + Rhgp1 (10)
since (7),(8) give

hyjs—1 = a7 Mala Hpees

hocre = Mg HYT+g RM @) fe 2 Lo@ e

an
Consider &, and insert (1), describing y, into (7) to obtain
QiEL = Prp hyje—1 + Prve - (12)

Adding and subtracting R;lt[t—l on the right-hand side of
(12) gives

oy = Rhy — Rhyp_1 + (010} — Ry + prve - (13)

Define

Zt (14)
(15)
which are called the autocorrelation matrix noise [9] and
the gradient noise, respectively. The signal fi, can then,
from (10), (13), (14) and (15), be expressed as

prp; — R
Ztﬁtlt—l + @rug

> e

t

fi =Rhy + Ztilt}t‘1 + vy =Rhg + 1t (16)

see Fig. 2. The design of our adaptation law (7),(8) has now
been transformed into a Wiener filter design for Lx(q™"),
where 7); plays the role of noise, see Fig. 1.

Fig. 1. The filter design problem. The vector hyk is to be esti-
mated from f;, such that the steady state tracking error covariance
matrix of the parameter error b, is minimized.

The gradient noise 7 is affected by the term Z; ilt]t—l,
here called the feedback noise. It is shown in [4] that the
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feedback noise is negligible either when h; has small incre-
ments or when the noise v; has high variance. Such situa-
tions are denoted “slow variations” [4],[10]. The optimal
learning filter will then operate in open loop, with 7y =
v Stability and convergence in MSE is then guaran-
teed by stability of the learning filter, which follows directly
from a Wiener design. (While the learning filter LY
must be stable, the filter M;(g™") in (11) need not be sta-
ble, since it works within the feedback loop of Fig. 2.) An
iterative design must bee performed when Ztﬁt(t—l cannot
be neglected, see Section 5.

4. LEARNING FILTER OPTIMIZATION

The transfer operator £x(g~") can be adjusted to minimize
(6) for t ~ oo when #H(g™") in (4) and the properties of
7, are given. The learning filter is here designed under the
constraint of stability, and under the following assumptions.

Assumption Al: The sequence {¢}} is stationary and
known up to time ¢, with R known and nonsingular O

Assumption A2: The gradient noise 7j; is white and sta-
tionary with zero mean and covariance matrix R,,. It is un-
correlated with A, _; and with fy_jj—i—1,8 > 0 a

Assumption A3: The linear regression coefficients are
described by a stochastic vector ARIMA process

D (g Hhs = C (g Ve mn

with R, = Ee;e} nonsingular, where D = D, D,. Here
C and D, are monic and stably invertible, while the poly-
nomial D, has zeros on the stability limit (unit circle) O

Under Assumptions Al-A3, the (generalized) innova-
tions model of f; = Rh; + 7; can be expressed as

ft:RD—IBEt =4 Et:ﬂ_lDR—lft (18)

where the polynomial matrix B(q™") is the stably invertible
spectral factor and ¢; is the white zero mean innovation se-
quence with unit covariance matrix. By defining the signal
a1
- D u(q—‘) ’
a Wiener designed adaptation law can be realized as in Fig. 3,
in which D;'Q, represents the causal factor of the real-
izable MIMO Wiener solution. By comparing Fig. ! and
Fig. 3, it follows that the optimized causal learning filter is

LP = D'QB DR . (20)

= BT'D,R'f; (19)

€t

The polynomial matrix Q (g~ 1y can be obtained from closed-
form expressions [3). In particular, @, = g(8—D fo), with
Bo being the leading coefficient matrix of B(g™"). With this
expression and (11),(20), the Wiener optimized filter matrix
M (g™ 1) in (8) can be shown [3] to be given by

MP' = DTIQuF R @



Fig. 2. The prediction learning filter operates in open loop for
slow variations, when Z¢h,),_, can be neglected. For fast varia-
tions, the feedback noise Zhyj;_ has to be taken into account.

Akt

D;'Q,

Fig. 3. The Wiener optimized tracking algorithm.

5. ITERATIVE WIENER DESIGN

For slow time-variations, the feedback noise is by defini-
tion negligible [4], so we may perform a one-shot design
using 7 = sv;. Otherwise, the properties of 1; depend on
L1(g™") via (15). The multiplication by Z; in (15) acts as a
scrambler, which for FIR models with white inputs will re-
duce the correlation between the feedback noise and hy;_1,
so Assumption A2 still holds approximately for white noise v;.
The open-loop design can then be performed iteratively. We
proceed as follows:

1. Perform a one-step predictor design for slow time-*
variations, i.e. use R, = E@uvfof to design L1(g7").
Verify that the closed loop around £(g~ ") of Fig. 2 is sta-
ble. If not, scale up R, to decrease the gain of £1(g™").

2. Based on a simulation of ¢y, v, he and of Btlt—la
estimate R,, from ), = wtst—R(ht—ﬁm_l) (see (10),(16)),
by using sample averages Over fj;.

3. Design a new estimator £1(g™").

Repeat steps 2. and 3. until the difference in ﬁt+1|t be-
comes small. Then, design L(g~") for the desired k.

Generalizations to colored gradient noise and uncertain
hypermodels exist, see {2, 3].

It will be possible to find an initial stable solution under
mild conditions. If #{ is stable, then £;(w) — 0V w when
" the assumed noise power is increased. If Z; has bounded
elements, then the small gain theorem [11] implies that the
closed loop of Fig. 2 can be stabilized by assuming a suffi-
ciently high noise power in the design of £;(¢™").

Example. Consider the uplink of a TDMA-based mo-
bile cellular communication system in which two mobile
users transmit at the same frequency in the same time slot.
A receiver with two diversity branches detects both users
u} and u? simultaneously. Two-tap fading channels are as-
sumed so the model can then be expressed by (1) with

e f uwl uwi W Wi, 0 0 0 0
e 0 0 0 0 wiowl, ud oul,

and

— (pll 31l 312 312 321 321 322 322 \T
hy = (bo,t bie boy bi: Yo b1 bo: bl,t) )

where the complex channel taps by, and b}/, associate with
the mobile user j and the receiver branch i. The transmitted
symbols {u]}, here assumed to be known by the receiver,
are white QPSK symbols with zero mean and R = Ig. The
zero mean noise vy is white with variance o21,.

Second order statistics of fading radio channel taps can
be well approximated by autoregressive models. These are

* here assumed to be of second order and described by

1 : 1
D(g~%,wp,iT) 1 —=2pcos(w,;T/V2)g~t + p2q~2"’

where wy ; is the maximum Doppler angular frequency for
mobile j and T is the sampling time. (This model provides
a reasonable approximation to classical Jakes Rayleigh fad-
ing statistics if the pole radius is selected as p = 0.999 —
O.leu’T for wD’]‘T < 0.10.)‘

We investigate wy, ; € [0.02 0.10], which approximately
correspond to vehicle speeds from 45km/h to 225km/h in
symbol spaced sampled ANSI-136 1900MHz systems.

If the two vehicles have different velocities, yielding
wp,1 -and wp o respectively, and if the channels to differ-
ent receivers are assumed uncorrelated, then C = Ig and
D = diag[D 11D 13D 91 D 9] in the hypermodel (17),
with diagonal blocks D ;;(¢™") = D(g™ %, wp ;T)I5.

The receiver is assumed to be synchronized to mobile 1,
resulting in zero correlation between taps from mobile 1.
We assume correlation 0.8 in the taps from mobile 2 and set
the SNR equal for both users. This determines R, which
becomes 2 x 2-block diagonal. The velocity of mobile 1 is
fixed to 45km/h, while the velocity of mobile 2 is varied.

Four-step prediction estimators (k = 4) are appropriate
in Viterbi detectors [7]. They are designed according to the
iterative scheme outlined above, for the two cases wyp 2T =
0.02 and wp 2T = 0.10, and for an SNR per channel in the
range 10dB-30dB. Fig. 4 displays the tracking MSE tr P,
for designs assuming slow time-variations (dashed curves)
and full iterative designs (solid curves), measured from sim-
ulations of length 10000. A single iteration was sufficient at
all design points except at 30dB in the upper curves.

The performance of the constant-gain tracker is close to

3863



TWO RECEIVERS, TWO MOBILE USERS, TWO TAPS

KALMAN

TRACKING MSE
3

GCGo
GCG

KALMAN

10 15 20 25 30
SNR, dB

Fig. 4. The sum of squared four-step channel tap prediction errors
tr P4 when mobile 1 moves at 4Skm/h while mobile 2 has veloc-
ity 45km/h (lower curves) and 225km/h (upper curves). Results
for one-shot designs assuming 7; = ;v (dashed), full iterative
design (solid) and the Kalman 4-step predictor (dash-dotted).

that of the Kalman estimator! at all operating points. This
performance can be well approximated at many, but not all,
operating points by the non-iterative design for slow pa-
rameter variations. The exceptions are high vehicle speeds
at high SNR’s: In the upper curve of Fig. 4, the use of
7; = @y at SNR 30dB results in instability. A design the-
ory based on slow time-variations [8] simply cannot handle
such situations. However, when the covariance matrix for
7¢ is scaled up in the first iteration, our iterative design is
completed successfully. '

In Table 1, we compare the tracking MSE and the com-
putational complexity? for Kalman predictors, for the Wiener
design, denoted the general constant gain algorithm (GCG),
for exponentially windowed RLS and for LMS estimators.
The GCG Wiener design attains nearly the same perfor-
mance as the Kalman estimator, at much lower complexity.
Note that the use of RLS would in this example result in
both bad performance and a high computational load.

SNR | wp,2T | Kalman GCG RLS LMS
10 0.10 0.477  0.516 143 1.58
30 0.10 0093 0.142 082 1.00
10 0.02 0.170  0.179 033 0413
30 0.02 0.013  0.017 0.077 .0.115

#mult. 5440 416 1564 132

Table 1. Steady state sum of mean square tracking errors tr P4
and number of real multiplications per time step, obtained by
optimized Kalman tracking, the general constant gain algorithm
(GCG), RLS and LMS adaptation algorithms.

1The Kalman predictor is designed based on a state-space realization of
(17) with 16 complex-valued states with (1) as the measurement equation.

2Measured as the required number of real-valued multiplication-
accumulation operations per sample. We utilize the diagonal structure of
D (g™ ") and R, and the block-diagonal structure of Re.

6. CONCLUSIONS

We have outlined the design of a class of adaptation laws
which are generalizations of LMS. For details, see [2, 3, 41.
Compared to Kalman tracking of linear regression parame-
ters, a main advantage with the proposed class of algoritms
is their lower computational complexity. Another advantage
is that it becomes more straightforward to design fixed-lag
smoothing estimators. A disadvantage is that our Wiener
design is a steady-state solution, which could lead to worse
transient properties than for a Kalman estimator.
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