ADAPTATION WITH CONSTANT GAINS: ANALYSIS FOR SLOW VARIATIONS

Lars Lindbom, Mikael Sternad and Anders Ahlén

Signals and Systems, Uppsala University, PO Box 528, SE-75120, Uppsala, Sweden.
Lars.Lindbom@ks.ericsson.se, {ms,aa}@signal.uu.se

Abstract: Adaptation laws with constant gains, that adjust
parameters of linear regression models, are investigated. The
class of algorithms includes LMS as its simplest member.
Closed-form expressions for the tracking MSE are obtained
for parameters described by ARIMA processes. A key el-
ement of the analysis is that adaptation algorithms are ex-
pressed as linear time-invariant filters, here called learning
filters, that work in open loop for slow parameter variations.
Performance analysis can then easily be performed for slow
variations, and stability is assured by stability of these learn-
ing filters.

1. INTRODUCTION

Consider discrete-time and possibly complex-valued mea-
surements generated by a linear regression

Yo = grhe +vp ()

where y; is the measured signal with n,, elements, v; is a
noise vector while } is an n,|n, regression matrix, which
is known at discrete time ¢. The parameter vector

he=(hot - hpp-14)" (2)

with 7, known, is to be estimated.
We shall here investigate a class of linear time-invariant
estimators

Porkle = Mila™Dper 3)

operating on R
wies = (Yt — prheje—1) 4)

the negative gradient of |¢;|2. Above, ﬁt+k,t is an estimate
of h¢4 obtained at time £ by filtering (k = 0), prediction
(k > 0) or fixed lag smoothing (k < 0). Most known linear
algorithms with constant gains fit into this structure, e.g. the
LMS algorithm with M, (¢™") = (/{1 —¢7 ")) L

Wiener methods for adjusting M(g~") have been de-
veloped in [1],(2]. In this presentation, we outline a per-
formance analysis of adaptation laws (3) that track slowly
varying parameter vectors hysyx. The resulting estimation
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error fzt“,t = Rty — hgqp)e is investigated and closed-
form expressions for the steady-state parameter tracking er-
Tor covariance matrix

A i i
Pp = lim Pyyyye = m Ehepyyehyyy, , O

that hold under the following assumption, will be presented.

Assumption 1: The parameter vector h; is well de-
scribed by a linear time-invariant vector ARIMA process
and the noise v; is stationary and zero mean, while ¢}, with
known dimension, is stationary with zero mean and nonsin-
gular covariance matrix R = E @} . Moreover, hy, v;, and
¢ are mutually independent O

We do not assume consecutive ¢} to be independent.
However, the assumption that the regressors (; are inde-
pendent of the parameters h; and of the noise v; excludes
the analysis of AR and ARX models.

Notation: Here, R(g™!), R(g”!) and R(q™!), denote
polynomials, polynomial matrices and causal rational matri-
ces, respectively in the backward shift operator ¢! (g™ 'y, =
y¢—1), while R.(g) is the conjugate-transpose of the poly-
nomial matrix R(g™').

2. THE LEARNING FILTER

The basis for the analysis is that all linear time-invariant
estimators (3) can alternatively be expressed as

o0
hupee = Lo@™Dfi=Y L¥fii (6)
t=0

Li@™) & M@ )T+ RMi@ )™ . ()

Here L£L4(¢™ "), called the learning filter, must be stable and
causal. It operates on a signal vector f;, obtained by insert-
ing (1) into @;£; and then adding and subtracting Rhy;_;
on the right-hand side of (4), giving

e = Rhy—Rhysy + (00} — R)Ayey + vy
A .
= fi—Rhypy . (8)
Thus, . A
fi =Rhyyy +peg = Rhy 41y - ) -



The use of pye; = fi — Rg™' Mpie; from (9) in (3) gives
(6),(7). The signal f; can be regarded as a measurement
consisting of a rotated parameter vector Rh; disturbed by
an additive noise 7;, called the gradient noise. 1f the term
n¢ is regarded as a zero mean stationary additive noise, then
stable and causal filters (6) can be designed analytically to
minimize the tracking error covariance matrix Py.

Optimal Wiener design, presented in [1], results in sta-
ble learning filters L;(¢™"'). For adaptation laws obtained
by other means, stability must be verified separately. For
the LMS algorithm,

(= ¢ Dhgyyye = poeer (10
the learning filter
LigH =1~ (T~ pR)gH) (1

is obtained by inserting @ie; = fy — q‘lRth+1]t from (9) in
(10), or directly by inserting M(¢g”™") = (u/(1 — ¢ *)) I
in (7). The stability requirement on £3(g~") in (11) cor-
responds to the classical condition for convergence in the
mean [3]

0<p< ) (12)

where Amax is the largest eigenvalue of R. This readily fol-
lows by an eigenvalue decomposition of R in (11).

In open loop, stability and bounded estimation errors are
guaranteed by stability of the learning filter. However, since
(9) and (8) imply that

Amax

e = Zihye 1 + oot (13)
where Z; is the zero mean matrix
Zy = o) — R, (14)

the gradient noise 7; will contain a time-varying feedback
term Ztﬁm_l from old parameter errors, here called the
Jfeedback noise. This feedback involves the one-step predic-
tion learning filter £;(q™"), see Fig. 1. The gradient noise
1 will therefore be influenced by the design of the estimator
and the feedback may in a general case cause instability.

A sufficient but conservative condition for stability of
the feedback is provided by the small gain theorem [4]: If
L1(g™")Z; is causal and L,-stable, stability is preserved if

e~ L1 HZehye—1llp < Yhgeallp 5 ¥ <1 .
In [5], less conservative conditions are derived for FIR sys-

tems with white input data.

3. PERFORMANCE ANALYSIS

By (6), (9) and (13), the tracking error can be expressed as

herre = X — ¢ ¥ LR hok — Liprvy — LiZihyy—y
(15)

Fig. 1. The feedback loop around £, (g~*) via the feedback noise
Ztﬁm_ 1 may significantly affect the fictitious measurement f;
and may also cause instability. The variations of h¢ will be re-
garded as slow when this feedback can be neglected.

Thus, three terms affect the tracking error: The lag error
(Ir- q“kﬁkR)th, an error term Ly v, caused by mea-
surement noise, and a feedback noise term L Z¢hyg_y in-
fluenced by old parameter tracking errors.

If h¢y k)¢ 1s stationary, then the error covariance matrix
(5) will under Assumption 1 be given by

: k
Po= Jim (Vh +VE,  +Vh +VE 4 VE )

hZh,t puZht
(16)
where
Vi, = EM-qg LR (1~ ¢ FLeRheys)”
a7
Voot = E(Lapv)(Lrprve)” (18)
V;;L,t = E(LiZihys1)(LrZehye—1)* (19)

The two last terms in (16) are due to correlations between
the feedback noise, the lag error and v, respectively.

Slow variations and slow adaptation are a common as-
sumption in analysis of adaptation algorithms [6, 7, 9, 10).
This concept can be quantified in various ways. Some-
times, indicators referred to as “the degree of nonstation-
arity” (DNS) [8],[11] are introduced. In the book [12] by
Macchi, the degree of nonstationarity is defined as

\/Ellw:(ht ~he- )l 20

ElvtP

Parameter variations are considered slow if this quantity is
always small.

We introduce and motivate a definition that is related to
(20) but is more useful in the present formalism:

Definition 1: Regression parameters are regarded as
slowly time-varying when the feedback noise Z; ﬁt,t_l can
be neglected in an optimal MSE design, without affecting
the tracking error covariances significantly O

For slow parameter variations, we can thus neglect the
three last terms in (16) when evaluating the performance.
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Let the feedback noise contribution to 77; be neglected!
and assume that the remaining gradient noise can be repre-
sented by a stably invertible vector-valued ARMA process
with common stable denominator

M)
Na@ >

2D

Nt = YUy =

with 14 being a zero mean white noise with a nonsingular
covariance matrix

Enyf =R, 2 LR, . (22)

Furthermore, let the assumed vector-valued ARIMA model
of h; be represented in polynomial form with a common
stable or marginally stable denominator D(q™ ")

1

= — -1 23
ht D(q_l)c(q )et ) ( )
with a nonsingular covariance matrix
Eeel =R, 2 AR, . (24)

The design of L£;(g~") can now be based on Theorem 1
in [1] (with D (¢7") = D(g~HI). By invoking (1),(6),(9),
(21)-(24), the MSE-optimal learning filter is then given by

L) = Qula™HBE@ H ' N@ HR™ .

Here (g™ !) is the stable solution to the left polynomial ma-
trix spectral factorization '

25)

BB, = ACR,C NN, + )\, DR'MR,M,R™'D,
(26)
while Q. (g™"), together with a polynomial matrix Ly.(q),
is the unique solution to the Diophantine equation

Aeg*CR.C N, = Q,B, +qlDLt, .  (27)

Let R, and R, be nonsingular and fixed, while the scalars
e and A\, may vary. For a vanishing parameter-drift-to-
noise ratio A /A, — 0, the variations will be slow accord-
ing to (20). We now state that the feedback noise can in fact
be neglected in this situation, which occurs either when the
parameters h, vary slowly, or when the noise level is high.

Lemma 1: Let the learning filter £4(g™*) be obtained
by (25)-(27), assuming 1; = w;v;. Under Assumption 1,
the relative impact of the feedback noise Ztizt[t_l on the
true error (15) will then tend to zero as A /A, — 0.
Proof: See Lemma 1 and Lemma 2 of [5] O
With a negligible feedback noise, the feedback around
L;(¢g”") in Figure 1 can be neglected. Stability will for
HZJLW_I || — 0 be assured by stability of the learning filter.

11t can be noted from (13) and (14) that the feedback noise vanishes
when @4} can be substituted by its average R.
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The Wiener design presented in [1] can for slow vari-
ations be performed directly, without iterations. Further-
more, whenever the feedback noise can be neglected, stea-
dy state tracking error covariance matrices can be calculated
for a given (not necessarily optimally designed) adaptation
law with constant gain. More specifically, for slowly vary-
ing parameters and for stationary tracking errors, the co-
variance matrix Py of the steady-state k-step tracking error,
defined by (5), is under Assumption 1 given by

— Ii k k
Py = tlglgo( Vit Voue) - (28)

For systems described by (1),(6),(9), (21)-(24), this equals

A k CR.C. * dz
Pk = 271‘] (I -2z CkR) *——D——D—*— (I -2z Lk*R) -
Ay MR, M, . dz
v Y e o)
+27rj][£k NN, Fe 9)

The integrands of (29) provide the distribution in the fre-
quency domain of the parameter lag error and the noise-
induced error, respectively.

The expression (29) holds for arbitrary parameter dy-
namics (23) as well as for colored measurement noise and
correlated regressors, as long as the feedback noise can be
neglected. Note, however, that ﬁH_k(t must be assumed sta-
tionary, implying bounded variance, even for parameters
generated by marginally stable systems (23). Stationarity is
guaranteed if and only if £x(g™") is stable and all elements
of the lag error matrix in (15), I—q=*% £1(g~ )R, are assured
to contain all marginally stable factors of D(g™") in their
numerators. This property will be guaranteed in the MSE-
optimal design [1]. In the case of integration, D = 1 —q7 %,
the low-frequency gain (for z = €7 = 1) of L4(z~") must
be R™!. This is e.g. true for the LMS filter (11).

4. EXAMPLE

The validity of expression (29) will be investigated for a
scalar FIR system with two parameters

Yyt = hogug + hygug—1 +ue (30)

with white zero mean noise and with white zero mean re-
gressors, u € {1, —1,4,—i}, yielding R = I5. The param-
eter dynamics is governed by the second order AR process

31

with p = 0.999 and where w, is here varied to provide dif-
ferent magnitudes of the DNS expressed by (20). The vari-
ance of v; is set to 0.01 and R, = A I, where ). is selected
to give an output SNR of 20 dB, with E ||h||2 = 1.
One-step prediction estimates are obtained by LMS and
by a Wiener-designed adaptation law (WLMS), tuned to the

hy = 2pcoswohy—1 — P hi—z + €



dynamics of the FIR system by using (25)-(27). (These
equations become simple and scalar, with closed-form so-
lutions, in this case [2].) The?LMS step-size p is tuned to
minimize the simulated performance, whereas the Wiener
design is here based on the assumption of slow parameter
variations according to Definition 1.

Table 1 compares tr P; with corresponding estimates,
obtained by simulation over 100000 data (italic figures).
Note the much lower tracking error variance for the Wiener
design as compared to LMS.

The term tr Vlzﬁ = lims 00 Vlzﬂ’t, which is the largest
term due to the feedback noise in (16), is also measured.
This term essentially explains the difference between the
expression (29) that neglects the feedback noise, and the
true performance. A more accurate performance analysis
that works for fast variations in FIR parameters by taking
also the term tr VIZ;1 into account is presented in [5].

For LMS, the expression (29) predicts the performance
reasonably well for w, below 0.005, while the Wiener de-
sign, performance is well predicted by the theory up to w, =
0.02 if the limit for significant deviations is set to 10%.

Figure 2 displays the spectra of the two error term inte-
grands in (29) for w, = 0.01 . Note the peak of the LMS
lag error around w, and the contribution of high-frequency
noise to the LMS error spectrum.

The bottom line of this example is that it does indeed
pay off to use more sophisticated algorithms than LMS even
in cases of slow parameter variations. One reason is that
LMS implicitly assumes random walk parameter variations.
Furthermore, the degree of nonstationarity (20) is designed
for LMS but gives a somewhat crude indication of when a
simplified analysis is adequate in general. The concept of
negligible feedback noise gives better guidelines.

Table 1. The asymptotic tracking etror tr P; when second order
FIR models (30),(31) are tracked by LMS and WLMS. Theoretical
predictions from (29) (bold) and simulation results (in italics).

Wo 0.001  0.005 0.01 0.02° 0.10

DNS: 20 .0141 .0510 .1005 .2002 .9996

LMS: trPy 0011 .0027 .0045 .0075S .0360
.0012  .0030 .0052 .0099 .0650
tr Vlz 5 | 0001 .0003 .0007 .0020 .0278

WIENER  trP; 0007 .0013 .0019 .0028 .0061
DESIGN: .0007 .0014 0021 0031 .0076
0000 .0001 .0002 0003 .0015

1
trv,;
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SPECTRA OF THE LAG ERROR AND THE FILTERED NOISE
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