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Abstract

The fading envelope in mobile communications
causes rapid variations of the receiving conditions. Fast
radio resource allocation and planning require accurate
predictions of the changing received power. To form a
prediction of the fading power, the individual taps of the
channel are here predicted and their squared magnitude
are summed. The dynamics of the taps can be mod-
eled as subsampled autoregressive or ARMA-processes,
leading to the different linear predictors studied in this
paper. The prediction performance is evaluated on mea-
sured mobile radio channels at 45 locations with a band-
width of 6.4 MHz and Doppler frequencies in the range
30-110 Hz. With the proposed predictors the normalized
mean square error for the power prediction is below one
percent for prediction ranges up to 2.5 ms, for a ma-
jority of the measured channels.

1. Introduction and outline

Prediction of rapidly time-varying mobile radio
channels is of interest in e.g. power control, fast link
adaptation [1], transmit diversity based on feedback,
and fast resource allocation [2, 3, 4]. For example,
power control loops in WCDMA include a feedback de-
lay of 0.67 ms. This corresponds to a small fraction of
the distance between two fading dips, and prediction
over such horizons is relatively easy.

Fast radio resource allocation and planning would
require more long-range predictions with adequate ac-
curacy (within 2-3dB). The longer the horizons, the
better resource optimization can be achieved.

Long-range prediction based on past observations is
receiving increasing interest and some approaches are
described in [5, 6, 7, 8]. The difficulty increases with
the prediction length. Prediction over a large fraction
of a Doppler wavelength is a very challenging problem.
Model experiments offer some insights {7, 8, 9], but
tests on measured data are essential.

We utilize channel sounding measurements acquired
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in suburban as well as urban areas at 1880 MHz, us-
ing a 6.4 MHz sampling rate!. FIR channel estimates
of length 120 samples were obtained by least squares
estimation over blocks of 700 samples.

We study long term power prediction over horizons
of 1-10 ms, which correspond to up to one wavelength
in space. While complexity is important, prediction
performance will be the main focus here. Our previ-
ous studies on measured data [6, 7} have led to several
conclusions that are essential for good performance:

1. The signal power changes abruptly around fading
dips, while the channel taps vary smoothly. Power pre-
diction based on power samples is therefore inferior to
predicting the individual taps and then summing their
squared magnitudes.

2. In highly oversampled channels, it is worthwhile
to filter the data to reduce noise before prediction is
performed. This is the case in our data set with a
channel sampling frequency of 9.14 kHz and a highest
Doppler frequency of 110 Hz, see Section 3.

3. Linear predictors have good generalization prop-
erties beyond the data set used for adjustment, while
nonlinear channel prediction by Volterra filters or Mul-
tiple Adaptive Regression Splines fail in in this respect
[6, 7). We thus focus on prediction by linear filtering
of past channel tap estimates.

4. A good prediction performance will depend on
accurate modeling of the fading statistics. The fading
environment will change due to movement of the mo-
bile and this limits the length of data windows. Good
accuracy is provided by parametric time-series models
such as autoregressive (AR) or autoregressive-moving
average (ARMA) models. These models should be sub-
sampled, see Section 4, but still be trained on all sam-
ples within the adaptation window.

We here discuss two algorithms, described in Sec-
tions 4-5, that fulfill the above requirements:

Sub-sampled FIR predictors, that correspond to AR
modeling of the Doppler spectra are introduced in Sec-
tion 5.1. Sub-sampled Kalman prediction based on

!We thank Ericsson Research in Kista for supplying the mea-
surement data.
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ARMA modeling is discussed in Section 5.2.

A performance evaluation based on the measured
data is summarized in Section 6.

Notation: Baseband samples (6.4 MHz) are in-
dexed by n, sequences at the channel sampling rate
(9.14 kHz) by ¢, while m-step sub-sampled sequences
(9.14/m kHz) are indexed by i. In filter polynomials

P@ ) =po+pg '+ ...+ papqg ™, (1)

the backward shift operator (g~ ¢z (t) = 2(t—£)) is used.
Subscripts s denote subsampled signals and filter poly-
nomials (1) designed for sub-sampled data.

2. Channel estimation

The data was recorded at 1880 MHz in central Stock-
holm as well as in Kista, a suburb of Stockholm. The
mobile antenna was placed on a car driving at 20-
60 km/h and the distances to the base stations var-
ied between 200-2000 m, mostly without line of sight.
The measurements resulted in 156.4 ms recordings of
the baseband signal at 45 locations. The fading widths
varied between 2 dB and 16 dB, with 7 dB on average.

For each location, time-varying parameters hg(n) in

() =S h(mun k) tum) (@)
k=1

were estimated. Here, r(n) is the received baseband
signal sampled at 6.4 MHz, hj(n) represent complex-
valued channel taps and w(n) is noise.

Above, u(n) is a known filtered transmitted se-
quence, obtained from back-to-back measurements of
the receiver connected to the transmitter. The taps
hi(n),hi(n),k # i will thus be almost uncorrelated.
A channel length n; = 120, corresponding to a time
span of 18.75 us, was found to be sufficient at all mea-
surement locations. The channel was assumed time-
invariant over blocks of 700 samples (channel sampling
period T = 109.4 us ~ 0.01 wavelength), an assump-
tion that introduces negligible errors at these fading
rates [10]. Block least squares estimates of the channel
taps were calculated, resulting in 1430 channel samples

he(t) =h(®) +o(t); k=1,...,120; t=1,...,1430,

covering 156 ms at each location. Here, hy(t) denote
the noise-free tap samples, while v(t) is zero mean noise
that is uncorrelated with hy(t).

At each location, we select a subset ranging from one
to 35 of the 120 taps that contribute at least 90% of
the signal power. The power to be predicted is defined
as the sum of squared magnitudes of these taps. The
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SNR ranges from 9 to 50 dB for the significant taps.
3. Wiener smoothing of noisy taps

The tap sequences hg(t) are approximately band-
limited so the noise outside of their passbands can be
reduced. Realizable IIR Wiener smoothers designed
according to [11] provide good disturbance rejection,
combined with low delay. They are based on ARMA
models for the signal h(¢) and the noise v(¢).

As signal model for all taps, we use a Chebyshev
type one low-pass filter of degree 4 with cut-off fre-
quency corresponding to a vehicle speed of of 105 km/h
(the model in Figure 1). The noise is well approximated
as white, and its variance can be estimated from the
power delay profile at each location.

Fixed-lag smoothers F(¢~!) with lag £ = 5 have been
designed for each tap?, using the estimated noise vari-
ance. The resulting noise-reduced time series is

y(8) = Fla ) (he(t) + v(t)) ~ hy(t — ) + Fla™")v(t) ,

s(t) n(t)
®)
since the effect of the smoother on the noise-free tap is
essentially a delay equal to the smoothing lag €. The
noise reduction results in an increase of roughly 10 dB
in the SNR. It improves the attainable prediction er-
ror variance by 2 dB for the considered algorithms, as
compared to operating on hy (¢) directly with predictor
algorithms tuned to handle more noise [7].
Figure 1 illustrates the spectrum for one tap before
and after smoothing.
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Figure 1: Power spectrum of the fixed fading model
used for smoother design (grey) and the Doppler spec-
trum for a tap A (t) with SNR 14 dB. To the right, the
tap y(t) (solid) is shown after noise reduction with the
smoother (dashed). The total bandwidth is +4.6 kHz.

2A smoothing lag £ of 5 will for these data provide noise re-
duction only a few dB less than for unlimited lags.
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The task is now to design predictors that use noise-
reduced tap estimates to predict the noise-free taps

8+ Lit) = f({y(t-Nht) , 720 . (4)

The effective prediction horizon will be (L — 5) x
0.109 ms, due to the smoothing delay £ = 5 in (3).
Since s(t) is unknown, the prediction error is evaluated
with respect to y(t). The error can then of course not
have variance below the variance of the noise n(t).

4. Doppler spectrum estimation

The predictor (4) will be related to the Doppler
spectrum of the tap s(t), see Section 5. Predictors
and spectral models should have sub-sampled form, i.e.
j =0,m,2m,...with m > 1in (4), for several reasons:

1. A longer filter memory can then be covered by a
fixed number of parameters. This increases the model-
ing accuracy for low-frequency oscillations [8].

2. Spectral estimates obtained by prediction error
methods normally minimize the variance of the one-
step error [12]. With sub-sampling, we minimize the m-
step error, which is more relevant to our L-step horizon.

3. The estimation of AR and ARMA models for
narrow-band signals becomes better conditioned.

-200 -150 -100 -50 0 50
Channel samples

Figure 2: Sub-sampling with m = 25 (x). The ring
indicates the sample to be predicted (L = 2m = 50).

Sub-sampling must be handled with some care, since
it will introduce aliasing. Tt should be applied only to
low-pass-filtered sequences. Furthermore, sub-sampled
filters have periodic spectra, repeated m times, that
can cause problems if their input has significant high-
frequency content.

The smoother F(g~') acts as our anti-aliasing low-
pass filter which makes it safe to sub-sample the se-
quence {y(¢)} of noise-reduced taps. The noise-free tap
s(t) will be band-limited. It can safely be subsampled
up to arate of m = 20, giving a new Nyquist frequency
of 4.6 kHz/20=230 Hz.

For t = im,i = 1,2,.,, the sub-sampled signal

Ys(i) = y(im) is
Ys(3) = 55(1) +15(8) 5 Elns@)* =X . (5)

With m > 7, the noise n4(i) becomes approximately
white, due to some remaining aliasing. An appropriate
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model structure for s4(i) = hx(mi — £) is an ARMA
model

NN A

0= 5, my=®
(6)

where e, (1) is zero mean white noise with variance A..

The reason is as follows. A conventional model for
a fading tap is based on N point reflectors and scatter-
ers. It is expressed as a weighted sum of the outputs
from N complex oscillators, which have slowly varying
frequencies (Doppler shifts) [5]-[9].

We here instead suggest a linear time-invariant
model that is valid for short intervals and is given by a
sum of N damped oscillators:

1+eg ' +...+cneq ™C
14+digt+...+dnpg P

3:(2) =

Ton(d) = paedPnTMg, (i = 1) + wy (i)
N
sa(0) = D om@sn(i) +6(0) . (7)
n=1

Here, T'm is the sub-sampling interval in seconds, wp,
is an average Doppler angular frequency for ray n and
pn £ 1 introduces damping. This damping is due to
averaging over slowly time-varying frequencies, as well
as the presence of continuous scatterers. Uncertainties
in the modeling are represented by w, (i) and €,(3),
which are all band-limited, since s,(¢) is band-limited,
but are otherwise unknown. We can treat them as noise
and substitute the resulting sum of stochastic processes
in (7) by one system, with the same second order mo-
ments. This operation is called spectral factorization,
and it results in an innovation model of the form (6),
withnp =N andng =N - 1.
A similar ARMA model can also be used for y,(%)
N Bs (q_l) .

ys(3) = D—SG;I—)EJO) > A (8)
where ¢,(2) is zero mean white noise with variance A..
If n,s(2) is assumed white, the spectra of y,(%), s,(i) and
ng(i) will be related via

Ba(e™3)Bs(€7)  \ Cs(e73)Cr(e?)
“D,(e~#)D3(ef) ~ " Dy(e=iw) D} (ei)
A complication for the prediction problem is that only
¥s (1) = 5,(2) + n4(?) is measurable rather than s,(z). If
the noise level is low, the model (6) can, however, be
approximated by the ARMA model (8) for y,(i).

Parameter estimation is performed for a limited data
window, due to the (slow) time variability. The best
accuracy is then obtained by prediction error methods
applied to low order models with few zeros [12].

All channel samples y(t) should be used in the es-
timation of (8). We create and utilize m sub-sampled
data vectors by shifting the data in y() by one step.

A +An (9)
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5. Prediction algorithms
5.1. FIR prediction based on AR modeling

It is well known that accurate estimation of zeros of
ARMA models requires long data records [12]. A first
attempt to predict s(¢) would therefore be to approxi-
mate (8) by an autoregressive model, (8,(¢™') = 1).
The least squares method is then used to estimate
D,(g7'). A sub-sampled FIR predictor

Bo(i + kli) = 9.+ Kli) 2 Golg™)ye(d)  (10)

or
3(t+ LIty =gt + Lit) = Ga(g~™(®) ,

predicts L = mk channel samples ahead. It can be
optimized in an MSE sense by solving the identity

1=Dy(g"")F,(g") + a7 *Gs(q7") (11)

with respect to F,(¢g™1!), of degree k—1, and G,(g!) of
degree np—1[12]. This is called the Direct FIR Method
in Section 6. Alternatively, the predictor coefficients
can be obtained directly by using least squares i.e. by
minimizing By, (i + k) — §,(¢ + k[9)[2.

Although these approaches are structurally incorrect
(Bs(¢™Y) = 1,8(t + L|t) = §(¢t + L|t)), they provide ro-
bust and rather accurate predictions, see Section 6.

5.2. Indirect ARMA-based predictor design

In Section 4, we argued that the best time-invariant
model for a baseband channel tap is the (sub-sampled)
ARMA model (6). We here present an indirect ap-
proach based on ARMA modeling and subsequent
Kalman estimation, which proceeds as follows. First
we estimate B5(¢™1), Ds(¢g™'), and A; in (8) with a
prediction error identification algorithm.

Stable B,-polynomials, are required by Wiener and
Kalman predictors. We therefore add a small term
Ap > 0 to the central coefficient of A\;3;8%. (This corre-
sponds to adding a weakly colored noise to n(i).) The
left-hand numerator of (9) is thus substituted by

A€ N(E®) B ABy(e™)Br(e™) + Ap

Since D, is known from the identification and ), can be
determined from the smoothed channel sounding mea-
surements, \,C;C; could ideally be calculated by the
use of spectral subtraction. However, unless we have a
very accurate estimate of By, this may result in erro-
neous zeros of Cs(z71) located very close to the stabil-
ity border. This in turn would deteriorate the predic-
tion performance. As a crude estimate, we instead set
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Cs(q7 1) = v,(g~!). An appropriate ), is then adjusted
so that the variance of y,(i) becomes correct.

Based on estimates of v,(g™!), Ds(g™!), Ae and A,
a state -space model, such as (7), with (3) as the mea-
surement equation, can be constructed. A set of m
Kalman predictor is then designed to obtain §(¢ + L|t).

A similar procedure can be based on an AR model
of s4(7). This is called the Indirect AR Method. It uses
(8) with B5(¢™") = 1 as an approximation for (6).

6. Results

The prediction performance of three methods are
now compared on measured complex taps. The direct
approach uses a sub-sampled FIR-filter (10) derived via
(11) from an LS-estimated AR-model for y,(i). The
two indirect approaches use sub-sampled Kalman pre-
dictors, one based on an estimated AR-model for s,(z),
the other on an estimated ARMA-model.

The variance of the sub-sampled measurement noise,
An, is used as a tuning variable for the Kalman predic-
tors. It is set to the highest level in the sub-sampled
smoothed noise spectrum.

After removing an initial transient, due to the
smoothing operation, 1420 samples for each tap can
be used. The first 1000 samples are used for identifica-
tion of the AR- and ARMA-models. The following 420
channel samples are then used for evaluating the pre-
diction performance. None of the channels showed sig-
nificant time-variability within the training intervals.

A sub-sampling factor of m = 8 is chosen to illus-
trate the good short range power prediction properties.
As the training interval is unfortunately short relative
to the tap fading pattern, we can only use models of low
order, with AR- and MA-polynomials of order np = 4
and ng = 2 respectively.

6.1. Tap prediction performance

10 10
10" 107
m
2]
>
Z 2
107 107
+=+= Indirect AR
== Direct FIR
_3 — Indirect ARMA || | &
10 10
0 5 10 0 0.2 0.4 0.6 0.8
Range [ms] Range [wavelengths}]

Figure 3: Medians of the normalized prediction MSE
for all 407 significant taps at the 45 locations.
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In Figure 3, the median of the prediction NMSE
as a function of prediction range, expressed both in
time and in traveled distance, is presented. The direct
and indirect predictors show similar prediction perfor-
mance, with the ARMA-based predictor giving the best
performance. In all the figures the scatter plots show
the performance of the ARMA-based predictor.

6.2. Received power prediction performance

We now calculate the sum of predicted powers of
the significant taps. The medians of this power predic-
tion NMSE’s for all channels are presented in Figure 4.
Two simple predictors are also included for compari-
son: The average power and the last available sample
of the power. Their performances are much inferior for
predictions up to 0.4 wavelengths, with few exceptions.

10° 10

+=»= Indirect AR
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— Indirect ARMA
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e Average
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Figure 4: Medians of the normalized prediction MSE
for the received power at 45 locations.

A more relevant measure of performance is how large
portion of time the predicted power is within a certain
bound relative to the true power. This is shown in
Figure 5 for a 1 dB bound. For 1-7 ms predictions
requiring a given percentage level, the indirect ARMA-
predictor can on these channels be used for ranges more
than 2 ms longer than the last sample predictor.

The obtained results are encouraging, but the per-
formance presented here is essentially limited by the
short data records, which limit the AR and ARMA es-
timation accuracy.

We believe that still better performance can be ob-
tained with training windows longer than 0.1 ms. The
length of the usable training window will ultimately be
limited by the time-variability of Doppler spectra due
to the movement relative to the closest scatterers.
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