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Abstract

A channel in a wireless communication link is often
treated as time invariant over an estimation interval, during
which a least squares estimate of the channel is calculated,
using training symbols. By a second order Taylor expansion
of the channel, the estimation error, due to time variation,
can be approximated as a bias and an excess error, which
are due to the curvature and linear change of the channel,
respectively. Approximate expressions for the variance of
the estimation error, in a Rayleigh fading channel, are pre-
sented here.

1. Introduction

To retrieve the transmitted signal in a mobile radio link,
an estimate of the channel is needed. For a slowly time-
varying channel this estimate can be obtained by using least
squares (LS) over an estimation interval, during which the
channel is treated as time invariant. Variations of the chan-
nel properties during the estimation interval will cause a
channel estimation error. In this paper, this error is analyzed
for the case of a Rayleigh fading channel.

A reasonable model for a mobile radio channel in the
baseband, is a time-varying FIR filter [1]. The received data
samples, y{n] can thus be modeled as generated by a linear
regression

y[n] = @"[n]h[n] + v[n], (1)

where @*[n} is the known regressor vector consisting of M
transmitted symbols z[n]
pln) =[z[n]zln -1]... z[n — M + 1]]H, 2)

and where the unknown FIR channel is represented by a
time-varying M -tap channel vector
h(n] = [ho[n] hi[n]. .. har—1[n]}”, 3)

while v[n] is a noise with zero mean and variance 2. Here,
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n is used to denote the index of a sample at symbol rate. Let

it} vl2)... y(N)" )
lel1] wl2]. .. p[N]}", )

where y is a vector formed by the N previously received
samples, and @ is a N x M matrix formed out of the N +
M ~1 ransmitted symbols. The LS estimate of the channel
impulse response, hy s, can then be found as [2]

I

y
P

hus = @'y £ (848) ¥y (©)
= (Z sO[n]soH[n]) > elnlenlhin] + 3tv, (7)

where v is a vector formed by the N previous noise terms,
and (-) denotes the Moore-Penrose pseudo-inverse. The
channel estimate, flLS, can thus be seen as a weighted aver-
age of h[n] over the estimation interval [1 N] corrupted by
an additive noise. The desired channel is the true channel in
the middle of the estimation interval. In the following, ap-
proximations for the variances of the different contributions
to the channel estimation error will be derived.

2. Noise-Induced Error

From (7) the error due to measurement noise is found as
(8)

For a white measurement noise independent of the training
sequence, the covariance matrix for this error is given by [2]

©)

where E, denotes expectation over the noise. Assume ac[n]
to be samples from a white complex circular sequence with
zero mean and variance o2. Applying (46), from Appendix
A, the ensemble average E, of Py for different training
sequences can be approximated as

eN = @TV.

Py = E,enell = o2(@7 )7,

o N+ M4k, —2

Px=alE (3" @) ~ 0] N2

I, (10

VTC'0l



where «.. is the Pearson kurtosis, which is defined as

o Elz[n][*

= EbIPP u

For a complex Gaussian sequence &, = 2 and for a complex
constant modulus sequence «, = 1. The sum of variances
of all parameter estimation errors, given as the trace of Py,
can by using (10) be approximated as

o N+ M+ Ky —2

tr Py =~ Mo? Nig2
O’I

(12)

3. Excess Error

In the following we utilize a decomposition of the time
varying channel into a sum of the average channel, hy; ny,
defined as

N

_ 1

by v 2 = > hinl, (13)
n=1

and the time varying channel deviation from ﬁ[l N} d{n)].
Thus,

hin] = hp n) + 9n). (14)

Using (14), the LS solution (7) can be expressed as

. X
hys=hy N]+<<§H'I’) 3 el nldln] + ex, (15)
n=1

where the time invariant and the time varying terms are sep-
arated. To obtain expressions for the average channel and
the deviation, we perform a second order Taylor expansion
of the continuous channel, h(t), around the middle of the
estimation interval

ts)

hin] = h(nts) ~ h<N—;—l

dh (N+1 \( N41\

dt 2 ¢ 2 ¢

d*h / N+1 N+1\2#
F(T“)(”‘T) 2 19

where ¢, denotes the sampling period. For oscillating chan-
nels, this Taylor expansion can be used for an estimation in-
terval not longer than half a period of the fastest frequency
component.

Using (16), the average channel can be expressed as

_ 1 N
hy v = N > hin]
n=1

~ h(J—VQthS> +

d’h

Pl 17

NHt N2—1t2
2 °) T
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The deviation J[n] can be obtained from (16) and (17) as

_ dh [N +1 N+1
19{7L]:h[fl}—-h[1 N]%;{-z( 2 ts) (TLAT) ts
d?h (N+1 N+1V  NZo1f ¢2
enryTe AL R (1

dt?( 2 ts) [(” 2 ) |2 ¥

Next we define the LS estimate’s deviation from the average
channel due to time variation, eg, as the excess error
eg = his—hpyny —en, (19)

and note that eg is zero mean (as h(t) and it’s derivatives
are zero mean). The covariance matrix for the excess error,
Pg, is found by averaging, E},, over channel realizations as

H
PE = EheEeE

N N
=EQ Y > (elnle™mlomlo imlelmle im)) Q,

n=1m=1

(20)

where (7 $)~12 Q. To compute P, using the second-
order Taylor approximation in (16), we need to first com-
pute the covariance and cross-covariance matrices of the
first and second derivatives of the channel. For a Rayleigh
fading channel these are obtained as (see Appendix B)

Exh(t)h"(t) = R, Q1)

h%—?%%H = “;—311,1 (22)
L )
h%%H = iLgéRh @24

where wy is the Doppler frequency. For moderately fast
fading, wqts < 1. The contribution from the second deriva-
tive of the channel in (18) can then be neglected and only
the inclination is considered. Using (22) and the first term
of (18), the covariance matrix of the excess error (20) can
be approximated as

N N
Pe~ Q) Y fln,mlenle nRaplmlem|Q, (25)

n=1m=1

where the scalar function f[n, m] is defined as

-2

Thus, for any given training sequence, the covariance
matrix of the LS excess error due to time variation of
a Rayleigh fading channel can be calculated using (25)
and (26).

_ iV_i_l) . (26)

Jay (tswa)®
)

fln,m] 5
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Given the distribution of the training sequences, an ap-
proximate average covariance matrix Pg for an ensemble of
training sequences can be calculated. Let the matrix part of
the sum in (25) be denoted

Eln, m] = ¢[n|e[n]Rnp[mle[m] 27N
Note that
M
PRy p[m] Z Z zln—k+1jzim—1+1]rg,, (28)

k=11I=1

where 1y = Rﬁil is the k, [:th element of the channel co-
variance matrix, is scalar and can thus be moved to the end
of the product. The average F, over training sequences of
the %, j:th element of E[n, m] is [3]

E,E"[n,m] =
M M
ELPZZrk,lm*[n—i—k1]$[m—j+l]:c[n——k—{—l]ac*[m—l+l]

k=11l=1
M

k=11
+ (Kz“Q)fsi,k(sj,l&nﬂ,m—j) 1

To find the variance of the excess error on the individual
taps we need only to calculate the diagonal elements of the
covariance matrix Pg and thus only E.2 =hi [n,m]fori = j,
which according to (29) renders

M=

Tt (05,605.1 + Oni e Onte met

Il
-

(29)

[

E ,E"[n,m]| =
M M

=0l (Ti,i +6nm ZZ"'k,lan—k,m—l + 5n,m(/iz—-2)7“i,i)
k=11=1

oz (7‘1',2' + hly hk o+ (Hz—2)?“i,i> n=m

4
G'_.c’r‘i’i

(30)

n#m

.

The expectation E, of the summation over 7, 72 in (25) can
now be calculated as

E, ZZ fln, m]’““[n m] =

n=1lm=1
(tswa)® N(N? - 1)
ol s2 — Zagk + (ke —2)07, | . (3D
k=1 ,
where U)sz =7y k is the variance of tap k. The diagonal ele-

ments of Pg, denoted by ‘7123,:’ can by inserting (30) in (25),
be approximated as

N N
o, =E,QY_ Y fln,m|E"[n,m)Q

n=1m=1

M
U (N 4 2(M +£p—2)) (z o+ (ks—2)0f,
k=1

(t Lu'd)

).

(32)
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72T f4)*

where all factors have been treated as independent and the
first and last factors of (25) are approximated as their en-
semble averages, as in (46) in Appendix A.

To express the covariance as a function of the time-
frequency product, the Doppler frequency wq has to be ex-
pressed as wy = 27 f4. The sum of variances of the excess
errors for all parameters, given as the trace of Pg, can then,
using (32), be approximated as

M
tr Pg = E U%k
k=1

~
~

UM +hy—2 ail

(1+

where T = Nt denotes the length of the estimation interval.

)> (M+mx—2)20,21k,(33)

6N
k=1

N
4. Bias Error

The LS estimate (7) deviates from the value of the chan-
nel at the middle of the interval. Insert (17) in (19),

R N1 _
th—h<_j——t>=h[1N]+eE+eN
N+1 d*h (N+1 \ N2-1 ,
= — | —1s t 4
h< 5 )+dt2( 5 ) o1 fsteeten.(34)

The second term in (34) can be viewed as a bias error 4],

N2_1
24

d’h

N —_—t,
B= e

<N+1 35)

__ts>

2

which depends on the curvature of the channel in the esti-
mation interval. Averaging over realizations of the channel,
the covariance matrix for ep is

N2 -1 d?h &?n "
— H
Py = Eregep ~ ( 24 ts) ha? dgr
_ -y 4 (T fa)*
1536 (tswa) " Rp = % ———Ry. (36)

The variance of the bias error does thus solely depend on the
length of the estimation interval and not on the statistics of
the training sequence. The trace of Py can be approximated
as

(L) 5 o

trPB~ 26 Ryt

(37
k=1

Note that the Taylor expansion (16) is valid for no more than
half a period of the fastest oscillation. Thus, the approxima-
tions are only valid for T fg < 1/2.
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5. Total Estimation Error

The LS estimate of the impulse response, at the middle
of the estimation interval, can be written as

- N+1
his=h ( L‘s> +eLs (38)
where the additive error term is approximated as
eLs ~ en +eg + ep, (39)

where the error terms are given as in (8), (19) and (35). Ac-
cording to (23), eg and eg are approximately uncorrelated,
since eg is related to dh/dt and ep to dh?/d?t. Further-
more, under the assumption that the measurement noise is
independent of the channel, ey is uncorrelated to both eg
and eg. The covariance matrix of the additive noise can
thus be modeled as

P.s =~ Py + Pz + Pg. (40)

The sum of parameter error variance can be obtained as the
trace of P, as obtained from summing (12), (33).and (37)

72T fa)*> N+2(M +r:—2)
6N N

de)4

trPis =

k=1
M

Zahk + Mo,

N+M+kry—2
R s AL

6. Simulation

In our simulation example, we let each tap in an approx-
imate Rayleigh fading channel be simulated as the sum of
500 complex sinusoids with Gaussian distributed amplitude
and frequency f4 cos(f, ), where 8,, is uniformly distributed
between [0 27[. The channel has four taps with exponen-
tially decaying variances 1, 1/2, 1/4 and 1/8, respectively.
The Doppler frequency is f; = 160 Hz and the sampling
period is t; = 5 us. A white QPSK signal is transmitted
over the time-varying channel and 10° samples are mea-
sured by the receiver. A measurement noise is added so that
the received SNR is 20 dB.

The channel is estimated block-wise using a LS estima-
tor using different numbers of training symbols. The esti-
mated channel is compared to the true channel and the error
is calculated for the estimated taps. The variance of the er-
ror is estimated and summed for all the taps in the channel to
obtain tr Py s. The theoretical value for tr P g is obtained
from (41). Both the estimated and thc theoretlcal approxi-
mation of tr P g are divided by Zk 1 O'hk to obtain the nor-
malized means square error (NMSE). As seen in Figure 1,
the theoretical approximation almost coincides with the re-
sult for the NMSE from the simulation for time-frequency
products, T f4, below 1/4 (344 samples) and after that the
NMSE is slightly overestimated.
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Figure 1. The variance of estimation error for
the simulated channels is compared with the
theoretical values obtained from (41). The
contributions from (12), (33) and (37) are plot-
ted separately. All variances are normalized
by the total power of the channel.
Appendix A

In the expressions for the covariance matrices of the
noise-induced error, (9), and the excess error, (20), the in-
verse of the sample covariance matrix plays an important
role. For a white training sequence, x[n], the matrix prod-
uct 7 & can be decomposed as

N N
378 =" olnlefn] = NR. + Y _Zn].  42)

n=1

where R, = 021 is the covariance matrix for z[n], and

lnle"n]

Zn] = -R. 43)
is the zero mean deviation from this covariance matrix. For
a circular complex valued sequence, it holds [3]

E,Z[n)Z[m] = 04(M + &z — 2)I6p . (44)
To obtain an estimate of the inverse sample covariance ma-
trix, we make a second order Taylor expansion around I as

1 & -
Q2 (@%) (I+ NU&;Z[n)
N
(45)
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The expected value of (45). using (44), yields

H _1~ 1 M+ k-2
E,(2"®) ~ vz [T+ ———HZ;;II% n
N+M+k, -2
- —172'0_3_—1' (46)
Appendix B

To compute Pg in (20) and Py in (36), the covariance
and cross-covariance matrices of the first and second deriva-
tives of the channel are needed. For a Rayleigh fading chan-
nel the autocorrelation matrix is given by [5]

Eph(t)h(t + 7) = RuJo(war), (47)

where Jo(-) denotes the zero order Bessel function of the
first kind [6],
w dT)Zk

Jo(wgr) = i ( 5
k=0

and wq is the Doppler frequency (in rad/s). Using (47)
and (48) the covariance matrices of the derivatives of the
channel can be derived. The covariance matrix of the first
derivative is

(=*
(kD)2

(48)

dhdn”
By @ =
h(t + At) — h(t) hf(t + Ar) — hH(t)
En At,Al-PL0.0 At AT

At éllr’lil—'oo AtA (Jo(wd(At AT) ) — Jo(wdAt)

—Jo(walAT) +1). (49)

Only orders up to two in the series expansion of Jo(-) are
needed as higher orders will cancel or have terms that will
approach zero in the limit.

dh dn* Rn w3 (At—AT)?
E _Xd
Mt dt  AtArsoo AtAT (1 4
ZAtz 2A 2 2
_1+wd4 _1+wd4r +1> — %Rh. (50)

The cross-covariance between the first and second deriva-
tive of the channel is

dh d2h h(t + At) — h(t — At)
Rat A T "anAr—op 2At X
hH(t + A7) — 2hH(t) + bt — A7)
Ar?

A, AT-*O o AtA 5 (Jo(wa(At—AT)) — 2Jo(walAt)

Jo(wa(At+AT)) — Jo(wa(At—AT)) + 2Jo(waAt)
Jo(wa(At+AT))) = 0. (51)
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The covariance matrix for the second derivative is

d2h d”h
hae? dee

Hey
Wit — A

H _onH
p B+ A1) — 200 +
At,AT—0.0 At?
hf(t + A7) — 2hf(t) + hfl(t — A7)
AT2

(4 + 2Jo(wa(At+AT))

Eh

At ir_po 0 AtQA 2
+  2Jo(wa(At—AT)) — 4Jo{wet) — 4Jo{waAT))).
(52)

Series expansion of Jo(:) up to the forth order is needed,
higher order terms cancel or approach zero in the limit.

d*h d2h Ry
Engem a2 A2 AuAr—00 AZATZ <4+
2 2 4 4
_ wi(At + AT) wi{At + AT)
+ 2 (1 ; + o
WAt — AT? WAt — AT)t
1-— d d
+ 2 ( n + o )
o (2 3 w2(At? + AT?) N wiatt + AT4))>
4 64
3 4
— 2R, (53)
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