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ABSTRACT

We present an efficient implementation of the 2-1) Amplitude
Spectrum Capon (ASC) estimator, denoted the 2-D Burg-Based
ASC (BASC) estimator. The algorithm, which will depend only
on the (forward) linear prediction matrices and the (forward) pre-
diction error covariance matrices, can be implemented using the
2-D Fast Fourier Transform. To compute the needed prediction
matrices, we make usc of a recently proposed 2-D lattice algo-
rithm, which computes the linear prediction matrices directly from
the multichanne] data without first computing the autocorrelation
sequence.

1. INTRODUCTION

The problem of two-dimensional (2-D) high resolution spectral es-
timation has been widely studied in the past litcrature [1], as well
as in more recent contributions such as [2, 3, 4]. Applications
occur in a wide variety of fields, such as geophysics, radio astron-
omy, biomedical engineering, sonar and radar, to mention a few. In
many of these applications, it is of key importance to obtain com-
putationally efficient high resolution cstimates, as for example it is
in synthetic aperture radar (SAR) image formation and target fea-
ture extraction. Popular approaches include the 2-D Periodogram,
and in the higher resolution cases the 2-D AR and the 2-D Capon
spectral estimators. A number of approaches have been suggested
for efficient estimation of the 2-ID AR spectrum (see, ¢.g., [1, 5, O]),
whereas only limited efforts have been made to simplify the 2-D
Capon estimator [1, 3, 4].

In this paper, we present a computationally efficient implemen-
tation of the 2-D Amplitude Spectrum Capon (ASC) spectral ¢s-
timation algorithm. The ASC estimator differs from that of the
“classical” Power Spectrum Capon (PSC) in the way the spectral
amplitude is estimated. Recent studies have shown that the ASC
spectral estimator will have significantly higher resolution than the
PSC spectral estimator [7, 8]. Another important difference is that
the ASC estimate will retain the signal’s phase information, which
the PSC estimate will not. The phase information is often nceded,
for instance in SAR imaging where one may use the phase to im-
prove the final image or to determine the height information in the
image. The proposed implementation is based on the recent 2-D
extension of the famous Burg algorithm [9, 4], and is denoted the
2-D Burg-Based ASC (BASC). The proposed algorithm, which is
a 2-D extension of the 1-D BASC algorithm presented in [7], will
depend only on the (forward) linear prediction matrices and can
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be efficiently implemented using the 2-D Fast Fouricr Transform
(FFT). Note that if onc has no interest in the signal’s phase infor-
mation, and the resolution of the 2-D PSC method is adequate, one
does better by using the 2-D PSC algorithm presented in [4] as it
is significantly faster than the here presented 2-D ASC algorithm.

2. THE MATCHED FILTERBANK APPROACH

In the filterbank approach to spectral estimation, the spec-
trum is estimated by passing the measured signal through an
(L1 + 1,L> + 1)-tap 2-D narrowband finite impulse response
(FIR) filter, He, o, , with varying center frequencies (w1, w2) (see,
c.g.,12]). Let the N, x N data matrix Z denote the available (sta-
tionary) 2-D data sample of which the spectrum is to be estimated.
The filter output can then be written as
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for t= 0,...,M1, s=10,..., My, w,w2€ [0,27r), where
()" and m4,s denote the complex conjugate transpose and
some additive colored noise term. Here My = Ny — Ly — 1,
My = Ny — Ly — 1 and the (L1 + 1)}(L2 + 1) x 1 filter vec-
tor hy, w0, = vee(Hu, w, ), Where vec(-) denotes the operation
of stacking the columns of a matrix on top of cach other. Simi-
larly, the (L1 + 1){L2 + 1) x 1 snapshot vector, y: s, is defined
as yi,s = vee(Yy,s), where the (L + 1) x (Lg + 1) submatrices
Y., are defined as
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fort = 0,...,Mi,s = 0,..., M. The least-squares estimate,
Gy we, Of the complex amplitude, o, ,w,, in (1) is given by
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The problem of designing hy | ., as a matched filterbank (MAFI)
was studied in [2]. It was found that the 2-D ASC method can be



interpreted as being member of the MAFI class. The correspond-
ing filter is given by (see [2] for further details)’

f{_laL(wl,wz)

(5)

h =
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where R is an estimate of the sample covariance matrix. Here,
ay (w1,ws) is the 2-D Fourier vector, defined as

(6)

e—ilrwn ]T’ %)

ar, (wx) ®ar, (wk)
[1

where ® and ()1 denote the Kronecker product and the transpose,
respectively. The true sample covariance matrix, R, is defined as
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where E{-} denotes the expectation, and where the block matrices
R, are defined as
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where i, = F {Zt+k,s+l Z,*,S} = 74, -;- Note that the covari-
ance matrix R has a (Hermitian) Toeplitz-Block-Toeplitz struc-
ture. The 2-D ASC amplitude estimate, at frequencies (w1, w2), is
given by (3) evaluated using the filter (5), i.e.,
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and the corresponding spectral estimate is given as the magnitude
square of (10}, i.e.,

(an

Note that the 2-D ASC will in general yield a different and often
preferable spectral estimate than the 2-D PSC spectral estimator,
which is obtained by estimating the power of the filter output, i.e.,
1
aj (wi,w2)R™1ag (wy,ws)
(12)
The problem of interest in this paper is to compute (10) in a com-
putationally efficient manner. We note that the primary compu-
tational burden to evaluate (10) is not, as it might first seem, that
associated with the inverse of the large dimension matrix R. Ifthat
was the case, an efficient algorithm for the inversion of a Toeplitz-
Block-Toeplitz matrix could have been used [11, 12]. Rather, it is
the computation of (10) over all frequencies that is normally more
time consuming. In the following section, we propose an efficient
way to do this using the 2-D FFT.
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'Note that both the PSC and the ASC spectral cstimators are con-
structed using the same filter. The difference lies only in how the methods
cstimate the amplitude spectrum [10].
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3. PROPOSED EFFICIENT IMPLEMENTATION

As was suggested in [2, 13], let C 2 R~Y/2 denote a square root
of the positive definite matrix R™! defined in (8), and let

Voywy, = Crag(wi,ws) (13)
l,l,wl)w2 é (;!*(_}u)l,w2 — U“;\/a;:—;;;l’u}?) (]4)

where
W = [ Yo,0 Y My,0 Yo,Mz Y My, Mo ] .
(15)

Making usc of (12), as well as (13), the 2-D PSC spectral estimate
can be formulated as (see also [4])

1
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Similarly, the 2-D ASC spectral estimate in (11) can be found as
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Thus, both the 2-D PSC and the 2-D ASC spectral estimators can,
given an estimate of C, both be efficiently computed using the
2-D FFT. An efficient computation of (17) was recently proposed
in [3). There, C was estimated by computing the Cholesky fac-
torization of the inverted outer-product sample covariance matrix
estimate R. This approach requires the computing of R, its in-
verse as well as the Cholesky factor €. Here, we instead propose
to construct C from the (forward) linear prediction matrices (see,
c.g., [14], Complement C8.3)
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where {Aj ..} and U, denote the matrix coefficients and predic-
tion error covariance matrices of the (forward) linear prediction
model of order n (see {1, 14] for further details). Here, Ug = Ro.
To compute the needed matrix square roots in (18), we use the
Cholesky factorization. As these matrices are significantly smaller
than the full covariance matrix R, the computational burden of
doing so will in comparison be minor. As was shown in [4], one
will obtain better spectral estimates if the needed linear predic-
tion matrices are computed using the recent 2-D lattice algorithm
[9, 4], as compared to the Whittle-Wiggins-Robinson algorithm
(WWRA) (see [14]) which is based on an estimate of the 2-D co-
variance matrix. This is well in accordance with similar results
in the 1-D case. Note that the 2-D BASC estimator will produce
(almost) the same cstimate as the 2-D ASC estimator computed
from the forward-backward averaged covariance matrix estimate.
This forward-backward ASC (FB-ASC) will yield a significantly



better spectral estimate, although with a somewhat lower resolu-
tion, than the forward-only ASC estimator [2]. The reason that
BASC will produce only almost the same estimate as FB-ASC can
be explained as follows: the estimate of C, as obtained by using
either the WWRA or the 2-D lattice algorithm, will in gencral not
yield the same estimate of C as the Cholesky factorization of the
torward-backward covariance matrix estimate. This is duc to the
fact that R is the outer product covariance matrix estimate, and
will thus not have the Toeplitz-Block-Toeplitz structure that is ob-
tained if an estimate of R is constructed trom a C computed as
suggested. Thus, the BASC and the FB-ASC spectral estimates
will not be identical, although as is shown in the next section the
estimates are basically the same.
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Figure 1: Relative computational complexity vs data matrix size.

4. NUMERICAL EXAMPLES

We first study the computational complexity of the different im-
plementations. The data matrix has been generated as the sum of
four 2-D complex sinusoids (cisoids) corrupted by additive com-
plex Gaussian white noise. The computational complexity is eval-
vated as the data matrix size, N1 = Na, varies. Figure | illus-
trates the relative computational complexity of the proposed 2-D
BASC spectral estimator for varying data matrix dimensions, as
compared to the 2-D PSC and 2-D ASC methods proposed in [3]
as well as the 2-D PSC estimator in [4]. [n the figure, the computa-
tional load of the different estimators, as measured by MATLAB,
has been normalized with the the load of the 2-D ASC method.
The simulation shows that the proposed 2-D BASC estimator will
be clearly faster than the 2-D ASC estimator in [3], especially
for larger matrices. As the difference between the two estima-
tors basically lies in how the (L; + 1) x (La + 1) Cholesky
matrix, C, is computed, this comes as no surprise. From the
figure, it can also be seen that the 2-I PSC implementation in
{4] will be about five times faster than the 2-ID PSC implementa-
tion in [3]. The reader is reminded that the 2-D BASC algorithm
should only be used in cases where one wishes to retain the sig-
nal’s phase information, or when the resolution of the 2-D PSC
algorithm is not sufficient. In the example, the filterlengths were
Ly = Ly = Ni/4, and the spectrum is zeropadded to length
Nu, = N,, = 4N, (which means that the spectrum is evaluated
using a 4N; x 4N;-point 2-D FFT). We proceed by illustrating
the spectral resolutions achieved by the different methods. We
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use a 32 x 32 data matrix that consists of a sum of four cisoids
corrupted by additive complex Gaussian white noise. The cisoids
all have unit amplitude, a phase offset of 7/4, and are located at
f = (—0.25,0.25), (0,0), (0.03,0), (0.3, —0.1). Figures 2(a)-
(c) illustrate the resulting resolutions obtained by using the 2-D
PSC and 2-D ASC estimates of [3], as well as the 2-D PSC esti-
mate presented in [4]. The proposed 2-D BASC estimate is shown
in Figure 2(d). As scen from the figure, the ASC estimators will
have better resolution than the PSC cstimators. In the example,
the filter lengths were Ly L, = Ni/4, and the spectrum is
zeropadded to length N,, = N.,, = 4N;. Further numerical
examples can be found in [10].
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Figure 2: Mlustration of the resolution and accuracy for the different spectral estimators. The estimates are plotted for fractions of the
sampling frequency. (a) The 2-D PSC estimate of [3]. (b) The 2-D ASC estimate of [3]. (c¢) The 2-D PSC estimate presented in [4].
(d) The proposed 2-D BASC estimate.
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