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Chapter 5

H, DESIGN OF
NOMINAL AND
ROBUST DISCRETE
TIME FILTERS

Polynomial methods were originally developed with control applications in
mind [1, 2], but have turned out to be very useful also within digital signal
processing and communications. The present chapter! will outline a polyno-
mial equations framework for nominal and robust multivariable linear filtering
and, at the same time, illustrate its utility for signal processing problems in
digital communications.

5.1 Introduction

Wiener and Kalman techniques for model-based filter design have been used
extensively by electrical engineers for decades. Today, these methods are
well known as tools for the design of #Hj-optimal estimators. The use of
Kalman filters has been the common choice within the control community.
A primary reason is the development of the state feedback control theory
[3], where Kalman observers constitute essential elements. Other reasons are
flexibility and the ability to cope with time-varying systems, as well as the
availability of Riccati equation solvers with good numerical behaviour.

IParts of the chapter include material from [4], [5] and [6]. Tt is republished with
permission by IEEE and by Academic Press. The chapter describes work supported by
the Swedish National Board for Technical Development, NUTEK, under contracts 87-
01583 and 9303294-2, as well as by the Swedish Research Council for Engineering Sciences
(TFR), under grant 92-775.
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Engineers working in the signal processing and communication fields have
instead tended to prefer Wiener filters. One reason is their lower computa-
tional complexity; when only a few signals are to be estimated, the use of
a time-varying estimator for the whole state vector is deemed unnecessary.
The use of filters in input-output form will furthermore provide immediate
engineering insight: A quick inspection of poles and zeros roughly indicate
what filter properties can be expected.

There are additional differences between control and statistical signal pro-
cessing. While rational transfer functions (IIR-models) are suitable as models
of the often slow dynamics of industrial plants, complexity requirements and
high speed applications have frequently forced designers in the signal pro-
cessing and communication fields to restrict their attention to FIR-models
and filters [7, 8, 9]. FIR-filters have the advantage of always being stable and
they can readily be optimized, on line as well as off line [10, 11].

FIR filters can approximate any time-invariant impulse response, but this
may require many filter coefficients. Long filters might be unacceptable from
a complexity point of view. Furthermore, the use of many parameters may
lead to overfitting [12]; the amount of information per parameter simply
becomes too small. Superior results could therefore in many applications be
achieved by the use of structures with fewer parameters, such as [TR-models
and filters.

Realizable ITR Wiener filters, based on ITR-models, are conceptually easy
to derive [13, 14, 15], but explicit solutions have been difficult to obtain. The
polynomial systems framework has been of help here. The rather intractable
causal bracket operation {-};, which is central in the classical expression of
realizable Wiener filters, can now be readily evaluated by means of a Diophan-
tine equation [6, 17, 18]. The polynomial approach to the design of Wiener
estimators for a wide class of filtering problems will be outlined in Sect. 5.2.
The polynomial solution provides not only the optimal adjustment, but also
the optimal structure and degree of the estimator. The resulting filters have
a structure in which numerator and denominator polynomial matrices of the
signal models appear directly. Such expressions provide immediate engineer-
ing insight into the properties of the solution.

Wiener filters are obtained by minimizing mean square error criteria. Al-
though this is highly relevant in numerous applications, other types of criteria
have been suggested as well. In particular, the use of robust filtering is of
interest, since signal models are rarely exactly known.

In order to attain robustness, criteria of minimax type have frequently
been used in the past. See, for example, [19, 20, 21]. A motivation comes
from situations where, perhaps for safety reasons, the effect of a worst case
scenario must be minimized, possibly in the presence of model errors. Robust
filters obtained in this way tend to be rather conservative.

Another concept which has been considered in the context of robust design
is Hoo-optimization. The design is then conducted with respect to signals of
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bounded power and unknown spectral density. See Chapters 2 and 4. In the
control literature, a main motivation for the development of H ,-optimization
during the 1980’s [22, 23] was to achieve robust stability for feedback systems.
This motivation is absent in open-loop filtering problems. Applications of the
Hoo concept also to estimation problems have, however, been proposed. See,
for instance, [24, 25] and [26]. The use of H-optimization for filtering simply
implies the minimization of the largest principal gain of the transfer function
between unknown norm-bounded signals and the estimation error. The re-
sulting filters will be inherently conservative, since they are designed to guard
against extreme situations, where all disturbance energy is concentrated at
the worst frequency. When such a design has to be robustified against mod-
elling errors [25, 26], the conservatism will become even more pronounced.
In view of this, it seems more promising to robustify a traditional o design,
which focuses on the minimization of mean square estimation errors.

Robust Hs-estimation can be formulated in minimax-Hs terms, see [19,
20, 21] and [27, 28, 29, 30], but we believe that in signal processing and com-
munication applications, the average performance will be a more adequate
measure of robust performance.

Robust filtering in an average Ho sense can be attained by parametrizing
model uncertainties by sets of random variables. The average, with respect
to these variables, of the mean square estimation error is then minimized.
The result will be a single robust filter, designed with respect to the specified
set of possible systems. The use of averaged #, filtering criteria has been
suggested previously in the literature in [31, 32, 33] and more recently in
[34, 35] and [4]. The design of robust (cautious) Wiener filters, as presented
in the last three references, will be summarized in Sect. 5.3. A corresponding
design of robustified Kalman filters, based on a combined use of state-space
and polynomial methods, was presented in [36]. This method is outlined in
Sect.5.4. A comprehensive treatment can be found in the thesis [37] by Ohrn.

The robust filters derived in Sect. 5.3 and 5.4 are suitable for model-based
design problems with moderate spectral uncertainties. They are also capable
of accommodating slow time variations. An illustrative example can be found
in [38]. If the uncertainties become large, or if the time variations are rapid,
then the use of a single robust filter will no longer be appropriate. The use
of filter banks or adaptive methods is then required.

Robust filtering can be used to obtain acceptable performance for a set of
systems. It can also be used when uncertain models are obtained by system
identification. The parameter covariance matrix will, for validated models,
constitute a useful indication of the actual amount of model error [39].

When the amount of data available for model adjustment is limited, it is
important to improve the model quality in frequency regions which matter
most for the subsequent filtering or control. In the control community, this
is known as identification for control [40]. The subject has received increased
interest during recent years primarily for control problems [41], but the issue
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is equally relevant for estimation problems.

The development of improved methods for model identification can be
seen as a complement to robust filter design. In digital communications, for
example, equalization of channel dynamics is essential. Based on a channel
model, the input signal to the channel is to be estimated. It would be desir-
able to use an identification algorithm which concentrates its accuracy in the
frequency regions of most importance for the equalization. Improved results
could then be obtained in the subsequent filtering step, since the range of
dynamics over which a robust filter needs to operate will thus be smaller.?
Unfortunately, little effort has been spent on methods of identification for
filtering, based on small data sets. For a preliminary investigation of such
problems, see the thesis [42] by Bigi.

The area of digital communications poses many other new challenges for
the model-based design of robust, adaptive and multivariable filters. We shall
briefly outline some aspects which have recently received attention.

5.1.1 Digital Communications: A Challenging Applica-
tion Area

Digital mobile radio communications [43, 44] is one of the most rapidly ex-
panding areas within the growing field of digital communications [45, 46].
A major reason is, of course, the introduction of cellular telephone systems,
such as GSM? and D-AMPS?. These systems are now capable of providing
both voice, fax and data services. However, various categories of users impose
considerable pressure on the development of the systems, by continuously re-
quiring higher capacity, improved quality and more advanced services, some
of which involve Internet access.

To meet these demands, operators and manufacturers are already plan-
ning for the third generation of systems. Today, two leading technologies for
third generation systems can be discerned, namely Time Division Multiple
Access (TDMA), such as GSM, which is narrowband, and Code Division Mul-
tiple Access (CDMA), which is broadband. (For some details, refer to Sect.
5.2.4.) With either technology, third generation systems will be designed to
operate at significantly higher carrier frequencies than the systems of today.

Currently, TDMA systems are most widely spread. Due to the often
rather severe conditions and the limited time for calculations, algorithms are

2Connected to this problem is the question if filters should be based on estimated models
(indirect tuning/adaptation) or if filter coefficients should be adjusted to the data directly.
One aspect is that model estimation is performed by minimizing the output prediction error,
while direct adjustment of an equalizer is performed by minimizing the input smoothing
estimation error. The latter criterion is directly related to the purpose of an equalizer,
namely input estimation. These questions are discussed further in Sect. 5.2.4.

3Global System for Mobile communications. The standard is used in Europe, as well
as in many other parts of the world, including North American PCS networks.

4Digital Advanced Mobile Phone System. The standard is used in North America and
a similar standard is used in Japan.
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required to be highly efficient and of low complexity. Estimation problems
occurring in TDMA and CDMA systems are challenging, for several reasons:

o Multipath propagation. In general, a signal travels to the receiver an-
tenna along multiple paths with differing transmission delays. This
is known as multipath propagation. Received symbols may thus be
smeared out over several symbol intervals, causing intersymbol inter-
ference. To retrieve the transmitted symbol sequence, channel estima-
tion and symbol estimation, equalization, will then be required. The
design of equalizers is closely connected to the deconvolution problem,
formulated in Sect. 5.2.3.

e Short data records. In TDMA systems, data are transmitted in bursts,
where each burst is allocated to a specific user. A small fraction of
the data, the training sequence, is known to the receiver. It is used for
identification of the transmission channel. Since the training sequence is
short, channel estimation errors are inevitable. The use of novel ways to
perform identification for filtering, combined with a subsequent robust
filter design, constitutes a promising path for improving the detection.

e High disturbance levels. The signal received from a particular mobile
transmitter is contaminated by noise and interference, caused by other
users in nearby cells and also on adjacent channels. The systems in
use today often suffer from an inadequate transmission quality, with
frequent interruptions of the radio connections. In some geographical
areas, the capacity is also inadequate. A conceivable way to alleviate
these problems, in CDMA as well as TDMA gsystems, is to use many
sensors (antennas) on base stations and possibly also on mobile units.
Multivariable methods for signal processing can then be utilized, to
improve reception by nulling out interferers while increasing sensitivity
in the direction of the transmitter. See, for example, [47, 48, 49] and
[5]. In Sect. 5.2.4, we will discuss this problem further.

o Rapidly time wvarying systems. Mobiles which are travelling in ur-
ban areas will move through a standing wave pattern, due to radio
waves reflected from surrounding nearby scatterers. The received sig-
nals will therefore have a time-varying amplitude, a phenomenon known
as short-time fading. Depending on the speed of the mobile, the carrier
frequency and the symbol rate, the fading will give rise to different de-
grees of time variability of the channel. In some systems, such as GSM,
the time variations are slow or moderate. A detector which is robust to
uncertain channel models may therefore be adequate. In other systems,
such as D-AMPS, the time variations will be much faster, requiring de-
tectors to be adaptive. As indicated in Sect. 5.5, this motivates the
study of improved adaptation algorithms, as in [50, 51, 52, 53] and [54].
For a detailed study of the channel tracking problem, see the thesis
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[54] by Lindblom, where also a novel systematic methodology for the
design of adaptation algorithms, based on polynomial Wiener filtering
concepts, is presented.

Summing up, estimation in mobile radio communications requires efficient
algorithms, which not only provide insight, but also robustness and adaptivity
as well as low complexity. It is our experience that the polynomial systems
framework is an excellent tool for solving problems in this challenging area.

5.1.2 Remarks on the Notation

Signals, matrices and polynomial coefficients may, in the following, be complex-
valued. This is, for example, required in communication applications. Let
p* denote the complex conjugate of a scalar p and P* the complex conjugate
transpose of a matrix P. Let trP denote the trace of P, while P7 is the
transpose of P.

For any complex-valued polynomial

P(g™") = po+pig 4. A Papg™

in the backward shift operator ¢~!, where ¢~'y(k) = y(k — 1), define the
conjugate polynomial

A * *
P.q) = po+pia+-.. +pn,a"

where q is the forward shift operator. A polynomial P(q,q~!) in both positive
and negative powers of ¢ will be called double-sided. Rational matrices, or
transfer function matrices, are denoted by boldface calligraphic symbols, for
example as R(g~!). Polynomial matrices are denoted by boldface symbols,
for example P(g~1).

For polynomial matrices, P.(q) denotes complex conjugate, transpose
and substitution of ¢ for ¢g—!. When appropriate, the complex variable z is
substituted for the forward shift operator ¢q. Arguments of polynomial and
rational matrices are often omitted, when there is no risk for misunderstand-
ing. The degree of a polynomial matrix P, deg P or np, is the highest degree
of any of its polynomial elements. A polynomial (matrix) is called monic if
it has a unit leading coefficient (matrix).

A rational matrix, R(z71), is defined as stable if all of its elements have
poles within |z| < 1. A rational matrix is causal if all of its elements are causal
transfer functions. Square polynomial matrices P(q~1) are called stable if all
zeros of det P(z71) are located in |z] < 1. If P(z7!) is stable, then all poles
of the elements of P~*(z~1) will be located in |z| < 1, while all elements
of P;'(2) have poles in |z| > 1. For marginally stable square polynomial
matrices, some zeros of det P(z~1) are located on |z| = 1.

A rational matrix may be represented by polynomial matrices as a matriz
fraction description (MFD), either left or right:
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G(g™') = AT (g Y)Bi(¢7Y) = B2(¢ V) AT (¢7Y) (5.1.1)

See [55]. It can also be converted to common denominator form

G ") = B(¢™) (5.1.2)

where B(g™!) is a polynomial matrix. The scalar and monic polynomial
A(q1) is then a common multiple of the denominators of all rational elements
in G(¢g71).

A filter which whitens a stochastic process y(k), in the sense that
(k) =V(gy(k) , Be(i)e(j)" =0, i#

is called a whitening filter. The whitening filters considered in the discussion
below are stably and causally invertible square rational matrices. The inverse
of the above relation,

y(k) =V~ (a ")e(k) (5.1.3)

represents an innovations model of the signal y(k) [56].

5.2 Wiener Filter Design Based on Polynomial
Equations

The use of polynomial methods for the (nominal) design of Wiener filters
has been discussed during the last decade by several authors [17, 18, 57, 58,
59, 60, 61, 62]. We shall begin this section by presenting a fairly general
problem formulation in Sect. 5.2.1 and Sect. 5.2.2, which includes many of
the previously considered filtering problems as special cases. Then, as an
example of the general setup, a deconvolution problem (Sect. 5.2.3) and a
equalization problem (Sect. 5.2.4) will be discussed in some detail. The re-
sulting estimators constitute multivariable model-based filters, predictors or
fixed-lag smoothers for the nominal case, without model errors.

5.2.1 A General #H, Filtering Problem
Based on measurements d(k) up to time k + m, a vector
2(k) = (z21(k) ... ze(k)T

of ¢ signals is to be estimated. The signals are modelled as the outputs of
the linear time-invariant discrete-time stochastic system

(58) = (3w o
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and the estimator is represented as a transfer function matrix, operating on
measurement data d(k + m)

2(klk+m) = Ralg7H)d(k+m) . (5.2.2)

Here, G4, D,, and R, are rational matrices of appropriate dimensions
and {uy(k)} is a stochastic process, not necessarily white. Depending on the
smoothing lag m, the estimator would constitute a predictor (m < 0), a filter
(m = 0) or a fixed lag smoother (m > 0).

When the model (5.2.1) is assumed exactly known, we will consider the
minimization of the estimation error covariance matrix

P 2 Ee(k)e* (k) (5.2.3)
where
e(k) = (ex(k)-..ee(k)T & W(g™")(z(k) — 2(k|K +m))

Above, W(q™ 1) is a stable and causal transfer function weighting matrix,
which may be used to emphasize filtering performance in important frequency
ranges. The covariance matrix (5.2.3) is to be minimized, in the sense that
any alternative estimator provides a covariance matrix P, for which P — P,
is nonnegative definite. The minimization is performed under the constraint
of realizability (internal stability and causality) of the filter R4(q71).

System Estimator
g, d(k) @, R, 2(k|k +m)
uy(k) P W ff_(k)>
D, (k) +

Figure 5.1: A general Wiener filtering problem.

Minimization of the covariance matrix (5.2.3) also implies the minimiza-
tion of the sum of the elementwise mean square errors (MSE)’s:

J4
J = trE(e(k)e*(k)) = E(e*(k)e(k)) = ZE|ai(k)|2. (5.2.4)

In Sect. 5.3 and 5.4, where the model (5.2.1) is assumed to be uncertain,
we will instead consider the minimization of an averaged MSE criterion

J = trEE(e(k)e*(k)) (5.2.5)
where E(-) denotes an expectation over stochastic variables, which are used
for parametrizing the set of admissible models.
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5.2.2 A Structured Problem Formulation

While the model (5.2.1) is general, it is frequently of advantage to introduce
additional structure, to obtain solutions which provide useful engineering
insight. For the purpose of this chapter, we will therefore introduce a more
detailed structure, which encompasses a number of special cases, some of
which will be studied in more detail.

Let us partition the vector u,(k) in (5.2.1) into two parts

i - ()

where w(k) represents additive measurement noise, uncorrelated to the de-
sired signal z(k). The desired signal is assumed to be a filtered version of
u(k),

z(k) = Dy(q)u(k) .

We also introduce explicit stochastic models for the vector u(k) and the noise
u(k) = F(ge(k) , w(k)=H(¢")v(k),

with F and ‘H being stable or marginally stable. The noise sequences {e(k)}
and {v(k)} are assumed to be mutually uncorrelated, white and stationary.
They have zero means and covariance matrices ¢ > 0 and @ > 0.5

If noise-free measurements are available, it can be of interest to handle
them separately. We therefore partition the measurement vector as

k) 2 (ZEZ? ) (5.2.6)

where the noise w(k) affects y(k) = (y1(k) . ..y,(k))? additively, while a(k) =
(a1 (k) ... an(k))? is uncorrupted by w(k).
The model structure (5.2.1) is thus converted to the form

S
—~
By
~

I
Q

s}

—

[~
i)
~—

y(k) S 1Y\,
0 ) () )

(5.2.7)

N

g =

T

>

~—

N——
I

(76 ) ()

See Fig. 5.2. Above, G, G,, F, #, and D are transfer function matrices
of appropriate dimensions. The transfer functions will, in the following, be

5Frequently, it is convenient to normalize ¢ and v to unit matrices and include variance
scaling in F and H respectively. This will be the case, for example, in Sect. 5.2.3 in the
robust estimation problems discussed in Sect. 5.3
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parametrized either by state-space models or by polynomial matrices in ¢!

as MFD’s (5.1.1) or common denominator forms (5.1.2).

All of the subsystems will in the present chapter be assumed stable. Corre-
sponding problems with marginally stable blocks are discussed in [37]. Struc-
tured or unstructured model uncertainty may be present in any subsystem.

Based on the measurements d(k), up to time k + m, our aim is thus to
optimize the linear estimator (5.2.2)

2(klk+m) = Ra(g~)z(k+m) = (R(g™Y) Ralg™1)) ( Zé’;iz; ) (5.2.8)

in which both R and R, are required to be stable and causal transfer function
matrices.

(k)
Noise
Signal Svet H Model Ectimat
Model ystem w(k) stimator
001 e U131 e BT 75 ey s I (v N RRYW EY
+
g, alk) "I~ R,
)

Figure 5.2: Unifying structure for a collection of Hj filtering problems. The
signal z(k) is to be estimated based on data y(k) up to time k + m.

The structure depicted in Fig. 5.2 covers a large set of different problems.
We shall in the present chapter discuss the following special cases:

e Multisignal deconvolution and linear equalization (Sect. 5.2.3);

e Decision feedback equalization of a white vector sequence of digital
symbols: W =1, F =1,D =1,G, =q¢ ™ ' I (Sect. 5.2.4);

¢ Estimation based on uncertain input-output models (Sect. 5.3);

e Estimation based on uncertain state-space models (Sect. 5.4).

5.2.3 Multisignal Deconvolution

The estimation of input signals to dynamic systems is known as deconvo-
lution, or input estimation. In such problems, G in (5.2.7) constitutes a
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dynamic system. An application, discussed in more detail in Sect. 5.2.4, is
the equalization of communication channels [45, 46, 63, 64]. Another recent
interesting application of multivariable deconvolution is the reconstruction of
stereophonic sound, as described by Nelson et. al. in [65]. Numerical dif-
ferentiation may be formulated as the problem of estimating the input to a
discrete-time approximation of an integrator [57, 58]. Applications to seismic
signal processing are described in [66], and the references therein.

We will consider the problem of deconvolution with multiple inputs and
multiple outputs, assuming the involved dynamic systems to be exactly known.
All problems described by Fig. 5.1 and Fig. 5.2 are included.

The deconvolution problem could be set up and solved using general
MFD’s, see [16, 17] or [24]. Here, we will approach the problem by rep-
resenting some transfer functions by MFD’s having diagonal denominator
matrices, while others are represented in common denominator form.

Parametrizing the problem in this way has several advantages. First, no
coprime factorizations will be required, which results in a transparent solu-
tion. Thus, engineering insight is more easily obtained. Second, the solution
involves a wunilateral Diophantine equation instead of a bilateral one: The
polynomial matrices to be determined appear on the same sides of different
terms of the equation, instead of on opposite sides. This will make the solu-
tion attractive, both from a numerical and from a pedagogical point of view:
Solving a unilateral Diophantine equation corresponds to solving a block-
Toeplitz system of linear equations with multiple right-hand sides. For an
example, see [4].

Let the measurement vector y(k) and the input u(k) be described by

y(k) = AN g )B(g " u(k) + N"Hg )M (g (k)
(5.2.9)
uh) = =l e)

Here, {A, B, N, M ,C} are polynomial matrices of dimensions p|p, p|s, p|p,
p|r, and s|n, respectively, while D is a scalar polynomial. The matrices A and
N are assumed diagonal. As indicated in the previous section, {e(k)} and
{v(k)} are mutually uncorrelated zero mean stochastic processes. Here, they
are normalized to have unit covariance matrices of dimensions n|n and r|r,
respectively. Since rows of M are allowed to be zero, noise-free measurements
can be included. The polynomial matrix B need not be stably invertible. It
may not even be square.
From data y(k) up to time k + m, an estimator

2(klk+m) = R(g V)y(k +m) (5.2.10)

of a filtered version z(k) of the input u(k)

2(k) = ﬁsm—l)u(k)
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is sought. The filter S/T, with T scalar and S of dimension £|s, may repre-
sent additional dynamics in the problem description, cf. [58, 59], a frequency
shaping weighting filter cf. [57], or the selection of particular states.

The covariance matrix (5.2.3), or the sum of MSE’s (5.2.4), is to be min-
imized with dynamic weighting

o
U(g™)

This problem formulation corresponds to the choice

W) = Vg .

G=A"'"B,G,=0,F=C/D,H=N"'M,D=S/T, W=V/U
and R, =[R 0] in (5.2.3),(5.2.7) and (5.2.8). See Fig. 5.3.

v(k)
1 Noise
Signal Syst N M] podel Deconvolution
Model ystem w(k) Filter
e(k) ve, u(k) A-B s(k) @y(k) a1, R |kl Am)
e e(k)
+ i
z(k)
)

Figure 5.3: A generalized multi-signal deconvolution problem. The vector
sequence {z(k)} is to be estimated from the measurements {y(k)}, up to
time k£ + m.

When {u(k)} is a sequence of digital symbols in a communication network,
the estimator (5.2.10) will constitute a multivariable linear equalizer. In order
to retrieve the transmitted symbols, the estimate 2(k) = @(k) is then fed into
a decision device.

Introduce the following assumptions.

Assumption 5.1. The polynomials D(q¢~'), T(¢7'), and U(q™') are all
stable and monic, while the polynomial matrices A(q~!), N(¢~!) and V(q~1)
have stable determinants and unit leading coefficient matrices. (Thus, they
have stable and causal inverses.)

Assumption 5.2. The spectral density of y(k), ®,(e’*), is nonsingular for
all w.

From (5.2.9), we now obtain the spectral density matrix ®, as
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1

® = 55 AT'BCC.B.A;' + NI\ MM.N;' = a7 '88,a;!
' (5.2.11)
where
BB, = NBCC.B.N,+DD,AMM,A. (5.2.12)
and

a 2 DNA .

Note that A and N commute, since they are assumed diagonal.

Under Assumption 5.2, a stable p|p spectral factor 3, with det 8(2~1) # 0
in |z| > 1 and with nonsingular leading matrix 8, = 3(0), can always be
found. Thus, o~ '3 constitutes an innovations model of the measurement
vector, while 37« is a stable and causal whitening filter, cf. (5.1.3).

The optimal estimator can be derived in many ways, of which completing
the squares, the variational approach, the inner-outer factorization approach
[67] and the classical Wiener solution are the most well known. See [16] or
[6] for a comparision. We shall here use the variational approach and a brief
outline of this methodology is presented next.

Optimization by Variational Arguments [6, 16, 17]. Consider the
estimator (5.2.2) and the criterion (5.2.3). Introduce an alternative weighted
estimate

S(k|k +m) = W(g 1) 2(k|k +m) + v(k) = W(g D Ra(g~Vd(k +m) + v(k)

(5.2.13)
where the column vector v(k) of stationary signals represents a modification
of the (weighted) estimate. See Fig. 5.4. The estimate 2(k) is optimal if and
only if no admissible variation can improve upon the criterion value.

) N A
e(k) . Linear | £(k) 0(k)
%» Linear | a(k) | .o w 2 —i Error
. System | z(k) W +

Figure 5.4: Setup for filter optimization via the variational approach in the
general estimation problem defined by (5.2.7) and (5.2.8). The weighted
estimate is perturbed by a variation v(k).

All admissible variations can be represented by

v(k) =T (qg~")d(k +m)
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where T (¢~1) is some stable and causal rational matrix. In problems with
unstable models, any nonstationary mode of d(k) must be cancelled by zeros
of T(q71). Except for these requirements, 7 (¢~1) is an arbitrary.

The use of the modified estimator (5.2.13) results in the covariance matrix

P = E{W(¢")z(k) — b(klk + m){W(q™")z(k) — §(k|k +m)}"

= Ee(k)e(k)* — Ee(k)v(k)* — Ev(k)e(k)* + Ev(k)v(k)* . (5.2.14)

If the cross-terms in (5.2.14) are zero, then v(k) = 0 will evidently minimize
P, since Ev(k)v(k)* is positive semidefinite if any component of v(k) has
nonzero variance. Then, the estimator (5.2.2) is optimal.®

Of the two cross terms, it is sufficient to consider only Ee(k)v(k)*, for
symmetry reasons. The estimation error (k) in (5.2.3) is required to be
stationary. This will be the case if z(k) and d(k) are stationary, since W(q™?!)
and R4(q~!) are required to be stable’.

With {e(k)} and {v(k)} being stationary sequences, Parsevals formula can
now be used to convert the requirement Ee(k)v(k)* = 0 into the frequency-
domain relation

Ee(k)v( 27”7{ 1¢€V =0 . (5.2.15)

The rational ¢|¢-matrix ¢,,. is the cross spectral density. The expression
(5.2.15) corresponds to the elementwise orthogonality conditions®

on dz _
Be, (k)va( 1.0, n=1...0 .
e (k). 2#]7{1¢ v L, n 14

(5.2.16)

These ¢2 conditions determine the estimator R4(¢~!). They are fulfilled if
the integrands are made analytic inside the integration path |z| = 1. All poles
of the integrands inside the unit circle should thus be cancelled by zeros.

Using the common denominator form or the left polynomial matrix frac-
tion description, the relations (5.2.16) can be evaluated collectively, rather
than individually, when ¢ > 1. They then reduce to a linear polynomial
(matrix) equation, a bilateral or unilateral Diophantine equation.

In robust design problems with uncertain models, the operator EE(-) is
substituted for E(-) in the reasoning above [4].

6By taking the trace of (5.2.14), it is evident that the scalar MSE criterion (5.2.4) is
also minimized by v(k) = 0.

"If z(k) or d(k) were generated by marginally stable models, stationarity of the estima-
tion error would have to be verified separately, after the derivation. See [6, 16, 37].

8When £ > 0, these conditions imply (but are stronger than) orthogonality between the
estimation error and any admissible perturbation of the estimate, which corresponds to
trE[e(k)v(k)*] = trEv(k)*e(k) = Ev(k)*e(k) = 0.
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Derivation of the Deconvolution Estimator. The methodology outlined
above will now be exemplified on the problem specified by (5.2.9)-(5.2.12) and
by the Assumptions 5.1-5.2. Let

e(k) = %V(z(k) — 2(k|k + m))

be the filtered error and v(k) = 7T (¢~ ')y(k + m) the variation. Since the
noises e(k) and v(k) are assumed uncorrelated, and since all the involved
systems are assumed stable, we obtain the cross covariance matrix

Ee(k)v* (k) = E%V [(%S — qm’RA‘lB> %C’e(k) —¢"RN"Muv(k)

['Tqm (%A_IBCe(k) + N_le(k))] )

SCC,B,A!

1 1
= I
215 Jla U {Z TDD,

1
_R[DD

d
A-lBCC*B*A;I+N-1MM*N;1]}T*; . (5.2.17)

*

The use of the expression (5.2.11) in (5.2.17) gives, with a; ' = D7 N1 A,

AR G0 W -1 _1p 4z
Be(k)v* (k) = 5. ]{ . { - —VSCC.B.N.-VRa ,G,B*}a* 7.2
(5.2.18)

The integral vanishes if the estimator R is adjusted so that no element of
the integrand in (5.2.18) has poles inside the integration path |z| = 1. Since
A, N and D are stable, a=' = A'N"'D=" has poles only in |z| < 1.
Elements of 3(z~!) may contribute poles at the origin.® These factors can
be cancelled directly by R. Moreover, if R contains V! /T as a left factor,
the matrix V is cancelled and 1/T'D can be factored out from the two terms
of the integrand, to be cancelled later. Thus, we select

1
R = TV_lQﬂ_lNA (5.2.19)
where Q(q™'), of dimension ¢|p, is undetermined. With the filter (5.2.19)
inserted, the cross covariance matrix (5.2.18) becomes
1y
B 27'['] |z|=1 UTD

Ee(k)v* (k) {z"™VSCC.B.N, — Qﬁ*}a;IT*dz—z :

9A polynomial B(z~1) can, alternatively, be represented as a rational function in z, by
multiplying and dividing with z”?. The elements of this rational function have poles at
the origin z = 0. Thus, we have to eliminate all numerator polynomials having z~! as

argument.
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All poles of every element of a1 7T, are located outside |z| = 1, since
is a stable polynomial matrix and the rational matrix 7 is causal and stable.
The remaining factor of the integrand may contribute poles in |z| < 1. In
order to attain orthogonality, we therefore require that

27 "VSCC.B.N, = QB8,+=zL.UTDI, (5.2.20)

for some polynomial matrix L,(z). We then obtain an integrand with only
strictly unstable rational functions in z as elements, so the integral

1

Ee(k)v* (k) = 37 L

L.(2)a; (2)T . (2)dz (5.2.21)
will vanish. Equation (5.2.20) is a linear polynomial matrix equation, a
unilateral Diophantine equation. Here, Q(¢~') and L.(q) are polynomial
matrices, of dimension £|p, with generic degrees!'®

n@Q = max(nc + ns + nv + m,nt +nd + nu — 1)

nL = max(nc+nb+nn—m,nB) —1 (5.2.22)

where nc = deg C, ns = deg S etc. Unique solvability of (5.2.20) with respect
to Q and L, can be demonstrated, see, for example, [4] or [6].

The design equations thus consist of the left spectral factorization (5.2.12),
the Diophantine equation (5.2.20) and the filter (5.2.19).!! For scalar sys-
tems, the solution reduces to the one presented in [57]. See also [59]. A
numerical illustration can be found in [6].

A Wiener filter works by first whitening the measurement. By introducing
D as a stable common factor, it is evident that the estimator (5.2.19) contains
a whitening filter 8 'ac = BN AD as a right factor.

The spectral factor 3 is unique up to a right orthogonal matrix. (If
FF, =1then 88, = (BF)(F.8,).) There exist several efficient algorithms
for polynomial matrix spectral factorization, some of which are based on state
space methods. A survey of algorithms is presented in [68]. See also [69, 70].

The Attainable MSE. The minimal (scalar) MSE criterion value is ob-
tained by inserting (5.2.19), (5.2.12), and (5.2.20), in this order, into (5.2.4).

We thus obtain, with H = VSC and P 2 UTD,

trE(e(k)e* (k))min =

10Tn special cases, the degrees may be lower.
1 For models with poles in |z| > 1, a second Diophantine equation will be required. See
Ch. 3 and [6]. Such models are, however, of limited practical interest in open-loop filtering.
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1
PP,

H(I1,-C.B.N.3;'p™! NBC)H*}% )
z

(5.2.23)

The minimal criterion value consists of two terms. The first term repre-
sents the error caused by incomplete inversion of the system A~'B. Only
the use of an infinite smoothing lag will cause this term to vanish, unless the
system is minimum phase and there is no noise. One can show that L — 0
when m — oo, see [58]. Thus, the second part of (5.2.23) represents the limit
of performance approached by a noncausal Wiener filter.

There exists a very special case in which perfect input estimation is pos-
sible with finite smoothing lags. It is the case of minimum-phase systems
without noise (M = 0, N =1 ), with ¢"™ B square and stably and causally
invertible. Consider this situation and let S = I, and 7" = 1. Then, the
direct inversion of the transducer dynamics

1 “1a-1
o yf (LB +

R=BlAq¢q™
will result in a vanishing integrand in (5.2.18) .

Adaptive and Blind Deconvolution. For scalar systems, the deconvo-
lution problem has also been studied in an adaptive setting. An interesting
feature here is that the spectral factor 8 need not be calculated from the
equation (5.2.12). Instead, it can be obtained directly from data, by estimat-
ing an appropriately parametrized innovations model

y(k) = a Y (g")B(g " )e(k)

of the measurement vector, cf. (5.2.11) and (5.1.3). See [73]. Based on this
fact, multivariable adaptive deconvolution, for the special case of white input
and noise, has been discussed in [71, 72] and [60]. Crucial for an adaptive
algorithm to work in more general situations, with coloured input and noise,
is that the model polynomials can be estimated from the output only. Al-
gorithms which can be applied in the scalar case with signals and noises of
unknown colour, but with a known system, have been presented in [73] and
[74]. In [75], the identifiability properties of the scalar deconvolution prob-
lem are investigated and conditions for parameter identifiability are given,
when G is known, while F and H have to be estimated. The conditions for
identifiability in [75] are based on the use of second order moments only.
Another challenging problem is that of blind deconvolution, where both
the input signal u(k) and the transducer/channel G have to be estimated
from data. The unique estimation of a possibly non-minimum phase system
G, based on only the second order statistics of its output is, in general,
impossible. The second order statistics does not provide the appropriate
phase information. If the input is non-Gaussian while the noise is Gaussian,
then higher order statistics can be utilized [76]. Higher order statistics is used,
directly or indirectly, in most proposed algorithms for blind deconvolution.
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Algorithms based on higher order statistics require long convergence times,
and the quality of the estimates may be sensitive to the assumption that the
noise is Gaussian. A recent discovery is therefore of significant interest: Blind
identification is possible, for cyclo-stationary inputs, if several output sam-
ples are available per input sample. The continuous-time baseband signals
used in digital communications are cyclostationary; the result is therefore of
interest for blind equalization. The number of received samples per symbol
can here either be increased by oversampling (fractionally spaced equaliza-
tion), or by the use of multiple antennas/sensors, so that y(k) is a vector,
while u(k) is scalar [77, 78]. Radio systems with several receiver antennas
are of increasing interest in particular for mobile applications, see Sect. 5.2.4.

A Duality to Feedforward Control. The set of problems for which the
solution above is relevant can be enlarged further. The considered deconvo-
lution problem turns out to be dual to the LQG (or Hz)-feedforward control
problem, with rational weights on control and output signals. See [79]. It
is very simple to demonstrate this duality. Reverse all arrows, interchange
summation points and node points and transpose all rational matrices in
Fig. 5.3. Then, the block diagram for the LQG problem is obtained. The
optimization problem remains the same for Hy problems, and indeed for the
minimization for any transfer function norms that are invariant under trans-
position. Thus, the equations (5.2.12) and (5.2.20) can be used also to de-
sign disturbance measurement feedforward regulators, reference feedforward
filters and feedforward decoupling filters.

5.2.4 Decision Feedback Equalizers

We now turn our interest to an important problem in digital communications
and outline a polynomial solution, which was originally presented in [80] for
the scalar case, and later in [6, 16]. The multivariable solution discussed here
has been presented in [5, 81].

Digital Communications in the presence of intersymbol interference
and co-channel interference. When digital data are transmitted over
multiple cross-coupled communication channels, intersymbol interference, co-
channel interference and noise will prevent perfect detection.

The transmitted sequence {u(k)} in question is white, and it may be real-
or complex-valued.'? Tt is to be reconstructed from a sampled received signal
y(k). Whenever the channel has an impulse response of length > 1, we are

120ne example is the use of p-ary symmetric Pulse Amplitude Modulated (PAM) signals.
Then, each component of u(k) is a real, white, zero mean sequence which attains values
{-p+1,...,—1,41,...,p — 1} with some probability distribution. In other modulation
schemes, such as Quadrature Amplitude Modulation (QAM), the signal u(k) is complex-
valued. For example, in 4-QAM, the symbols represented by the elements of u(k) may
attain the values {1+¢, 1—3i, —14:¢ —1—1}. See, for example, [45, 46].



Ha Design of Nominal and Robust Discrete Time Filters 19

said to encounter intersymbol interference: not only the symbol at time k,
but also previous symbols contribute to the current received measurement
y(k). The channel is then said to be dispersive. Dispersive channels occur
in digital mobile radio systems such as GSM. Other situations include mo-
dem connections over cable, transmission of data to and from hard discs in
computers, as well as underwater acoustic communication. In radio com-
munications and underwater acoustics, intersymbol interference is caused by
multipath propagation: The transmitted signal travels along several paths
with differing transmission delays.

A linear equalizer, for example the MSE-optimal design of Sect. 5.2.3, can
be used to retrieve the transmitted symbols. A linear MSE-optimal equalizer
performs an approximate inversion of the channel. This inversion may result
in noise amplification at the filter output, which severely limits the attainable
performance.

The lowest error rate would be attained by maximum likelihood estima-
tion of the entire transmitted sequence, implemented through the Viterbi
algorithm [82], which constitutes forward dynamic programming. Close to
optimal performance, at a much lower computational load, can often be ob-
tained with a Decision Feedback Equalizer (DFE). A DFE is a nonlinear filter,
which involves a decision circuit and a feedback of decisioned data through
a linear filter to improve the current estimate. See, for example, [83, 84, 85],
and the references therein. The attainable bit error rate of a DFE is in many
cases several orders of magnitude lower than for a linear equalizer. We shall
here consider DFE design as an application where noise free auxiliary infor-
mation a(k) is explicitely taken into account in the general structure (5.2.7).
In order to make the discussion general, we will consider transmission and
reception of several signals, that is, we will consider a Multivariable DFE.
The design or adaptation of the DFE is here assumed to be based on an
indirect approach, i.e. on an explicit multivariable channel model.

Let us describe a channel model structure which is appropriate for the
purpose of mobile radio communications.

A FIR Channel Model. Consider a sampled data vector sequence y(k),
which represents measurements from a receiver in a radio communication sys-
tem. The received signal is down-converted to the baseband [45, 46]. Under
such circumstances, multiple cross-coupled communication channels are ad-
equately modelled as FIR systems represented by polynomial matrices, with
complex elements. The channel model includes pulse shaping, receiver filters
and possible transmission delays. It will be described by the multivariable
linear stochastic discrete-time model

Y1 Bui(¢™') ... B (¢) uy (k) vy (k)
= S S EY
Yny Bn,i(¢™") ... Bnn.(q7h) Un, (k) vn,, (k)
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or
y(k) = B(g~YHu(k) + v(k) (5.2.24)
= Bou(k) +...+B,u(k — ny) + v(k)

Here, we have denoted by n; the highest degree occurring in any matrix el-
ement B;;(¢g™"). The sequence {v(k)} is assumed to be discrete-time white
noise, which is zero mean, stationary and uncorrelated with u(k).

y(k) a(k — mlk) w(k —m)

m— () ) 1l

Q¢ ) K

Figure 5.5: Structure of the multivariable DFE.

The Multivariable DFE. A detector designed to estimate only one message
u;(k) would have to treat the co-channel interference from the remaining
signals, > ; Bijuj, 1 # j, as noise. A multivariable detector, which estimates
all components of u(k) simultaneoulsy, can utilize the fact that the signals
have discrete and known amplitude distributions. This knowledge is utilized
in an efficient way by a multivariable DFE.

When the channel is adequately modelled by a polynomial matrix and
the noise is white or autoregressive, the appropriate structure of a DFE, cf.
[80], is described by

a(k —mlk) = S(g~Hy(k) — Qg™ )a(k —m —1) . (5.2.25)

Here, ii(k — m — 1) denotes previously detected symbols, while 4(k — m|k)
represents the amplitude-continuous (soft) estimate, obtained with smooth-
ing lag m. Detected symbols @ are obtained by feeding @ through a decision
device, which, in its simple form, is given by sign(i) for binary PAM sig-
nals. The polynomial matrices S(¢~!) and Q(¢~') have dimension n,|n,
and n,,|n,, respectively. See Fig. 5.5.

Our multivariable DFE is obtained by minimizing the MSE criterion'?

J=E ||u(k —m)—a(k —mlk) |5 . (5.2.26)

131t could be argued that a more relevant criterion is minimum probability of decision
errors (MPE), which leads to a nonlinear optimization problem. However, Monsen [84]
has concluded that consideration of MPE and MSE lead to essentially the same error
probability. A more recent discussion of this issue can be found in [86].
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An obstacle, preventing a direct minimization of J, is the presence of the
nonlinear decision element. It is impossible to obtain closed form solutions,
but the problem can be simplified by assuming correct past decisions. This is
a common simplification, which allows us to replace previous decisions (7)
by the correct values u(j) for j =k —m —1,k—m —2...in (5.2.25).

If previous decisions are correct, they can be used to completely eliminate
the contamination caused by past symbols, at the current time instant. In
contrast to linear equalizers, this can be achieved without any noise ampli-
fication, since we need not invert the channel. Instead, a feedforward mea-
surement of a(k) = u(k —m — 1) is used. Under the assumption of correct
previous decisions, the MIMO-DFE can be included in the general structure
(5.2.7), cf Fig. 5.2, by setting

ga = q_m_lInu ) F = In D = In Rd = [SaQ] .

u ) u 7

Thus, we have obtained an ordinary LQ-optimization problem. The result-
ing MIMO DFE, to be presented next, was derived in [81] and presented in [5].

Theorem 5.1. Consider the DFE described by (5.2.25) and the channel
model described by (5.2.24), where Ev(k)v(l)*] = ¥dr;. Assuming correct
past decisions, the polynomial matrices S(q¢~') and Q(q~') of order m and
ny — 1 respectively, which minimize (5.2.26), are obtained as follows:

o The feedforward filter S(qg') = So + Si;q~ '+ ...+ S;ng™™ is obtained
by solving the system of linear equations

B ... 0 I, .. 0 s: 0

BY ... B 0 .. I, s, |_|

% ... 0 By ... B, Lin || o

0 ... -¢ 0 .. Bg Lio (:)
(5.2.27)

with respect to the matrices S; and L;;. On the right-hand side, the
zero matrices have dimension ny|n,, and I, is positioned vertically in
block number m + 1.

e The coefficients matrices of the feedback filter

Qe ) =Q+Qu¢ ' +...+ Qn,,_1q_nb+1

are then given by

Q=) Sm_;Bjtin (5.2.28)
5=0
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Proof: See [81].

Remarks. The derivation, which follows the same principles as outlined in
Sect. 5.2.3, leads to two coupled Diophantine equations. These equations can
be transformed to the linear system of equations (5.2.27).

It can be shown that whenever the noise covariance matrix ¥ is nonsin-
gular, the system of equations (5.2.27) will have a unique solution, regardless
of the properties of the channel B(g~1).

The performance of the equalizer improves monotonically with an in-
creased smoothing lag.

Adaptation and Robustness. The equalizer coefficients can be calculated
from data directly. They can also be adjusted indirectly, via model estima-
tion and filter computation.!* The input MSE criterion (5.2.26) relevant for
equalization is used also for filter adjustment by a direct algorithm. An es-
timator of the model (5.2.24) would instead typically minimize the output
prediction error. For very long data windows, direct and indirect methods
provide the same performance, if the channel is time-invariant. For scalar
y(k) and time-invariant channels, a nominal indirect design will tend to per-
form worse than a direct one if the data record is of medium lenght (40-300
data) [87]. A possible explanation is a higher sensitivity to model errors, due
to the mismatch between the criteria used of identification and for filtering
[42]. For wvector measurements, the situation seems to be reversed; suitably
parameterized indirect methods then outperform direct adaptation of DFE’s
[49], since a smaller number of parameters need to be adjusted.

For short data windows, indirect methods clearly outperform direct ones,
for scalar as well as vector-valued received signals. For example, we advocate
the indirect approach when tracking rapidly time-varying channels, a situa-
tion which is common in mobile radio communications due to the presence
of fading. The reason for this is twofold. First, the time-variations of radio
channel coefficients will tend to be smooth, while the corresponding opti-
mal adjustments of the equalizer parameters will have strongly time-varying
rates of change. This poses a difficult problem for the selection of the gains
of a direct adaptive algorithm [54]. Second, the number of parameters in the
equalizer will, in general, be larger than the number of channel coefficients,
in particular if the smoothing lag is large. This makes it more difficult to
directly adjust the filter to short data sets [49].

If an indirect multivariable adaptive DFE is applied to a time-varying
channel, the filter coefficients will have to be recomputed periodically, using
Theorem 5.1. Note that the solution steps presented in Theorem 5.1 require
no spectral factorization. This reduces the computational complexity.

14When training data are available, they are used for identification. Otherwise, estimates
t(k) from the DFE can be used for so-called decision-directed adaptation.
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A major drawback with the DFE is that a single erroneous decision under
unfortunate conditions may cause a whole sequence of errors, an error burst.
This phenomenon is known as error propagation. It occurs, in particular, if
the feedback filter Q(¢~!) has a long impulse response.

In [38] and [88], robust equalizers are discussed for the scalar case. These
algorithms are based on uncertain channel models and are optimized with
respect to the averaged MSE criterion (5.2.5). They also provide means to
control the error bursts and can basically trade shorter but more frequently
occurring error bursts for a decreased frequency of long bursts. The system
can then be designed with a coding scheme which gives rise to a smaller
delay. The robust DFE is designed by assuming that the feedback signal is
corrupted by white noise, with an adjustable variance. As this noise variance
is increased, the gain of the feedback filter is reduced, until a (robust) linear
equalizer, without decision feedback, is obtained as a limiting case. Channel
uncertainty is taken into account as in Sect. 5.3 below.

Next, we will present some problems of digital mobile radio communications
in which multivariable DFE:s are applicable.

Example 5.1. Combined temporal and spatial equalization.

Consider a digital radio communications scenario where there is only one
transmitted message u(k) and n, receiver antennas. Let the channel from
the transmitter to receiver antenna i be described by

yi(k) = Bi(g~")u(k) + vi(k) . (5.2.29)

The scenario for n, = 2 is depicted in Fig. 5.6. The use of two antennas
will improve the attainable performance significantly if the channels B; and
B, differ. It will improve the performance moderately even for identical
channels, if the noises v; and v are not identical.

s
-+ Bi(q7Y) F—(3)—wn®)

u(k) va(k)
- By(q7Y) (E)— k)

Figure 5.6: Multivariable channel model in a system with two receiver an-
tennas.

Channel models of the type (5.2.29) occur not only in systems for digital
mobile radio communications, but also in systems for acoustic underwater
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communication. The structure is of increasing interest, since it enables spatial
filtering: The antenna may be adapted to have spatial nulls in the direction
of interferers while maintaining high gain in the directions of arrival of u(k).
See, for example, [5, 47, 48, 49, 81] and [86].

The equalizer described in Theorem 5.1 can be applied directly to the
above scenario. O

Example 5.2. Narrowband multiuser detection in cellular digital mobile ra-
dio systems.

The multivariable DFE can be used to detect multiple users on the same
channel in the same cell simultaneously [5, 81, 89, 90]. See Fig. 5.7. The user
ug could represent a second user in the same cell. Alternatively, us could
represent a co-channel interferer located in a nearby cell. The influence of
this interferer on the detection of u; should then be minimized.

Consider a scenario with n,, transmitters and n, receiver antennas. Let
the channel from transmitter j to receiver antennai be represented by B;;(q~!).
The received signal at antenna i, y;(k), can in this case be expressed as

zn

yi(k) =Y Bij(a™")uj(k) + vi(k)

j=1

By collecting the antenna signals in vector form, we obtain the model
(5.2.24). Application of the DFE at the receiver can be seen as a way to
utilize spatial diversity. If the transmitters are at different locations, then
the transfer functions B;; will differ for different transmitters j. It is here
interesting to note that multipath propagation which leads to intersymbol
interference will actually be of advantage. Propagations through different
paths will tend to make the channels unequal, which improves the attainable
performance.

Multipath
channels vi(k)

uy (k) Bu(g™) b)) yi(k)

1
ﬂ

By Uz(k)

— —
S S
—-

— —

ua (k) Ba(q?) by y2(k)

Figure 5.7: Multivariable channel model describing a situation where multiple
users simultaneously share the same baseband channel.
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O

Example 5.3. Multiuser detection in asynchronous DS-CDMA (Direct Se-
quence - Code Division Multiple Access).

Multiple users within a cell of a cellular radio systems can share resources
by utilizing different frequencies (frequency division), different time slots
(time division) or different codes (code division).!®

In systems using DS-CDMA, all active users within a cell transmit on
the same frequency band at the same time [91]. In order to distinguish
one message from another, each message is convolved with a different code
(or signature) sequence at the transmitter. The sampling rate of the code
sequence, the chip rate, is much higher than the symbol rate. The convolution
with the code will transform the narrowband message into a rather broad
band signal. A DS-CDMA system will thus constitute a spread spectrum
transmission system.

A DS-CDMA radio system with n,, simultaneous users can be represented
within the model structure (5.2.24). Define u(k) = (u1(k) ua(k)...un, (k))¥
as the vector of transmitted (scalar) symbols at time k. For simplicity, assume
the channels to cause no intersymbol interference. The received scalar signal
is assumed to be convolved with the appropriate code sequence and then
sampled once per symbol. Following Verdi [92], the sampled outputs from
a bank of n,, filters, which are matched to the signature sequences of the
individual users, may then be collected in vector form, as

Y (k) = R(1)Au(k + 1) + R(0)Au(k) + R (1) Au(k — 1) + v'(k) . (5.2.30)

Here, the matrices R(n), of dimension n,|n,, contain partial crosscor-
relations between the signature sequences used to spread the data, whereas
v’ (k) denotes noise. The square and diagonal matrix A contains channel co-
efficients associated with the different users. By redefining the measurement
and the noise as y(k) = y'(k — 1) and v(k) = v'(k — 1) in (5.2.30), we ob-
tain a causal multivariable channel model of the form (5.2.24), with n, = n,
outputs

y(k) = (R(1)A + R(0)Aq" + R (1) Aq™?)u(k) + v(k) . (5.2.31)

If the channel causes intersymbol interference, the constant matrix A
would be substituted by a diagonal polynomial matrix. If multiple antennas
are utilized, the dimensions of all matrices are increased correspondingly. 0O

15These strategies can be combined. They can also be complemented and enhanced by
utilizing spatial diversity with multiple antennas, as indicated by Examples 5.1 and 5.2.
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5.3 Design of Robust Filters in Input-Output
Form Based on Averaged H, Criteria

For any model-based filter, modelling errors will constitute a potential source
of performance degradation. In this section, we propose a cautious Wiener
filter for the prediction, filtering or smoothing of discrete-time signal vectors.
The methodology has been presented in [4, 35] and [34]. A comprehensive
exposition can be found in the thesis [37] by Ohrn.

The design of robust multivariable estimators, as it will be presented
here, will be based on a stochastic description of model errors, related to the
stochastic embedding concept of Goodwin and co-workers [12, 93].

To be more specific, the suggested approach is based on the following
foundations:

e A set of (true) dynamic systems is assumed to be well described by a
set of discrete-time, stable, linear and time-invariant transfer function
matrices

F=F,+AF . (5.3.1)

We will call such a set an extended design model. Above, F, represents
a stable nominal model, while an error model AF describes a set of
stable transfer functions, parameterized by stochastic variables. The
random variables enter linearly into AF.

e A single robust linear filter is to be designed for the whole class of
possible systems. Robust performance is obtained by minimizing the
averaged mean square estimation error criterion (5.2.5)

J = teBE(e(k)e(k)*) . (5.3.2)

Here, (k) is the weighted estimation error vector, £ denotes expecta-
tion over noise and F is an expectation over the stochastic variables
parametrizing the error model AF.

The averaged mean square error has been used previously in the literature
by, for example, Chung and Bélanger [31], Speyer and Gustafson [32] and by
Grimble [33, 94]. These works were based on assumptions of small para-
metric uncertainties and on series expansions of uncertain parameters. We
suggest the use of the criterion (5.3.2), together with a particular descrip-
tion of the sets (5.3.1): Transfer function elements in AF are postulated
to have stochastic numerators and fixed denominators. Such models can de-
scribe non-parametric uncertainty and under-modelling as well as parametric
uncertainty.
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5.3.1 Approaches to Robust H, Estimation

The most obvious ad hoc approach for increasing the robustness against model
errors is perhaps to detune a filter, by increasing the measurement noise
variance used in the design. This will work, in principle, if the transducer G
and/or the noise model # is uncertain. It might, however, be very difficult
to find an appropriate noise colour or covariance structure without a more
systematic technique. When the signal model JF is uncertain, a detuning
approach will not work at all. The filter gain should in such situations instead
be increased, in an appropriate way.

Most previous suggestions for obtaining robust filters in a systematic way
have been based on some type of minimax approach [19, 95]. For example,
a paper [96] by Martin and Mintz takes both spectral uncertainty and un-
certainty in the noise distribution into account. The resulting filter will be
of very high order. Minimax design of a filter R becomes very complex,
unless there exists either a saddle point or a boundary point solution. A cru-
cial condition here is that mingk max, equals maxg ming. If so, instead of
finding the worst case with respect to a set of models M, one can search
for models whose optimal filter gives the worst (nominal) performance, and
use the corresponding filter. This is a much simpler task, but can still be
computationally demanding. See [20, 97, 98, 99] and the survey paper [21]
by Kassam and Poor. ming maxys = maxy ming is not fulfilled in numer-
ous problems, which makes them very difficult to solve. See, for instance,
Example 5 in [34], and the example in [4].

Kalman filter-like estimators have recently been developed for systems
with structured and possibly time-varying parametric uncertainty of the type

z(k+1) = (A +DA(K)E) z(k) + w(k)

where the matrix A(k) contains norm-bounded uncertain parameters. See
[27, 28, 30] and [100] for continuous-time results and [29] for the discrete-time
one-step-ahead predictor. See also [101] for a related method. For systems
which are stable for all A(k), an upper bound on the estimation error co-
variance matrix can be minimized by solving two coupled Riccati equations,
combined with a one-dimensional numerical search. This represents a com-
putational simplification, as compared to previous minimax designs. Still,
the resulting estimators are quite conservative, partly because they rest on
worst case design. This conservatism is illustrated and discussed in [36, 37].

The method suggested in the present section and in Sect. 5.4 is computa-
tionally simpler than any of the minimax schemes referred to above. It also
avoids two drawbacks of worst case designs. First, the stochastic variables
in the error model need not have compact support. Thus, the descriptions
of model uncertainties may have “soft” bounds. These are more readily ob-
tainable in a noisy environment than the hard bounds required for minimax
design. Secondly, not only the range of the uncertainties, but also their likeli-
hood is taken into account by using the expectation E(-) of the MSE. Highly
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probable model errors will affect the estimator design more than do very rare
“worst cases”. Therefore, the performance loss in the nominal case, the price
paid for robustness, becomes smaller than for a minimax design. In other
words, conservativeness is reduced. There do, of course, exist applications
where a worst case design is mandatory, e.g. for safety reasons. However, we
believe that the average performance of estimators is often a more appropri-
ate measure of performance robustness.

One of our goals will be to present transparent design equations, and to
hold their number to a minimum, without sacrificing numerical accuracy. As
in Sect. 5.2.3, we therefore use matrix fraction descriptions with diagonal de-
nominators and common denominator forms. This leads to a solution which
is, in fact, significantly simpler, and more numerically well-behaved, than the
corresponding nominal Ha-designs (without uncertainty) presented in [17] or
[24]. Somewhat surprisingly, taking model uncertainty into account does not
require any new types of design equations. We end up with just two equa-
tions for robust estimator design: A polynomial matrix spectral factorization
and a unilateral Diophantine equation. The solution has a strong formal sim-
ilarity to the nominal design of Sect. 5.2.3 and it provides structural insight;
important properties of a robust estimator are evident by direct inspection
of the filter expression.

5.3.2 The Averaged H,; Estimation Problem
Consider the following extended design model
y(k) = Glg~Hu(k) + H(g™)v(k)

uk) = Flg)e(k) (5.3.3)
2(k) = Dl )ulk)

Y N

where G, ‘H, F and D are stable and causal, but possibly uncertain, transfer
functions of dimension p|s, p|r, s|n and £|s, respectively. The noise sequences
{e(k)} and {v(k)} are mutually uncorrelated and zero mean stochastic se-
quences. To obtain a simple notation they are assumed to have unit covari-
ance matrices, so scaling and uncertainty of the covariances are included in
F and #H, respectively.

As before, an estimator

2(k|lk +m) = R(gHy(k +m) (5.3.4)

of z(k) is sought. See Fig. 5.8. The transfer function R is designed to mini-
mize the averaged mean square error (MSE) criterion (5.2.5).
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Figure 5.8: A general linear filtering problem formulation with uncertain
linear models. Based on noisy measurements y(k + m), the signal z(k) is to
be estimated, as in Fig. 5.3. Model errors in transfer functions are described
by stochastic error models. Signals have the same dimension as in Sect.5.2.3.

Example 5.4. Equalization based on an uncertain channel model.

An application where uncertain dynamics in G is of interest is equalizer
design for digital mobile radio communications. See Sect. 5.2.4.

A signal u(k) then propagates along multiple paths, with different time
delays, represented by delays in G. In present systems, both the transmitted
symbol sequence u(k) and the received baseband signal y(k) are scalar. The
use of multiple antenna elements (p > 1), are however of increasing interest,
see Example 5.1 in Sect. 5.2.4. An appropriate model of G is then a column
vector of FIR channels, (5.2.29), i.e. a vector of polynomials. The polynomial
coefficients are normally estimated based on a short training sequence {u(k)}
which is known to the receiver. Estimation errors are inevitable. Further-
more, the channel coefficients will be slowly time-varying during the time
intervals between training events in, for example, the GSM system [38].

The task of a (robust) equalizer is then to estimate u(k), based on y(k +
m), a nominal model G,, and an estimate of the model uncertainty AG. 0O

5.3.3 Parametrization of the Extended Design Model

As in Sect. 5.2.3, we choose to parametrize G and H as left MFDs having
diagonal denominators, while F, D and W are parameterized in common
denominator form

G=A"'B; H=N'M (5.3.5)
1 1 1
= —C : D = —S M = —V .
F=5C 75 W=

It will be assumed that G, H and F may be uncertain. The weighting matrix
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W is assumed to be exactly known. It is shown in [4] that uncertainty in
D does not affect the optimal filter design, provided it is uncorrelated to
uncertainties in other blocks. Therefore, uncertainty in D is not introduced.

The extended design models, cf. (5.3.1), which consist of a nominal model
and an uncertainty model according to

g:g0+Ag ) %:%o'l"AH 5 .7:':.¢0+A.7:.

These models are now expressed in polynomial matrix form. Using B, =
A1B,, B, = A,B; etc. we introduce

G = AJ'B, + A]'BjAB = A;'A7Y(B,+B,AB) 2 A'B

H = N;'M,+ N7*M,AM = N;'NTY (N, + M, AM) 2 N—'M
1 1 1 . A 1

- —C,+—C,AC = c,+C,AC) & —cC.
7 D, et <t D0D1( +C1AC) D

(5.3.6)

Above, G, = A;lBo represents the nominal model and AG = A1_1B1 AB
the error model. The same holds for ‘H and F. The diagonal polynomial
matrices A = A,A;, N = N,N; and the polynomials D = D,D,,T and U
are all assumed to be stable, with causal inverses. Denominator polynomials
are assumed monic.

In the error models, the polynomial D1, the diagonal polynomial matrices
A; and N7 and the polynomial matrices C1, B; and M are fixed. They
can be used to tailor the error models for specific needs. For example, if
multiplicative error models are deemed appropriate, we use A; = A,, By =
B,B,, etc., with B,, to be specified.

The matrices AB, AC and AM contain polynomials, with jointly dis-
tributed random variables as coefficients. These coefficients are used to fit
the model class to the set of true systems. One particular modelling error
is represented by one particular realization of the random coefficients.'® An
element ij of a stochastic polynomial matrix AP is denoted

APY & [AP],, = ApY + Apq™ +...+ Apf g~*® (5.3.7)
where Jp is the degree of AP. All coefficients have zero means, so the nom-

inal model is the average model in the set. Only the second order moments
of the random coefficients need to be specified, since the type of distribution,

16For a given system realization, the random coefficients are assumed time-invariant
and independent of the time-series e(k) and v(k). This is in contrast to the approach of
Haddad and Bernstein in [102], who represent the effect of uncertainties by multiplicative
noises. For a given uncertainty variance, a noise representation would under-estimate the
true effect of (time-invariant) parameter deviations on the dynamics.
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and higher order moments, will not affect the filter design. The parame-
ter covariances are denoted E(Ap¥)(ApZ*)* and are collected in covariance

matrices PXi;ek), discussed further in Sect. 5.3.5.
We now introduce the following assumption.

Assumption 5.3. The coefficients of all polynomial elements of AC are
independent of those of AB.

It is possible to exclude Assumption 5.3, but it does simplify the solution
by eliminating the need of taking fourth order moments with respect to ele-
ments of AC and AB into account. The assumption is reasonable in most
practical cases.

5.3.4 Obtaining Error Models

Error models can be obtained from ordinary identification experiments, pro-
vided the model structures match. SISO transfer function models can also
be obtained in the presence of undermodelling, using a maximum likelihood
approach [12]. We shall next outline various ways to adjust error models to
the variability of the dynamics within sets of possible SISO-systems.

Obtaining Extended Design Models from Identification. Model er-
ror estimates are obtained from many types of identification algorithms, for
example prediction error methods. In a Bayesian setting, a model error es-
timate can be said to represent the characteristics of a possible set of true
systems, which might have generated the data used for identification. It is
conventional to decompose the estimation error into a variance error, caused
by noise in finite data sets, and a bias error, which would remain even for in-
finite data sets. The bias error is caused by the selection of an inappropriate
model structure. Model structure selection can sometimes be difficult, but is
aided by systematic procedures for model validation [104].

If the model error caused by bias is small, and if the data series is not
too short, then the estimated parameter covariance matrix of an identified
model provides acceptable estimates of the modelling errors.!?

For model structures with denominator polynomials, such as AR, ARX
and ARMAX models [103, 104], the estimated model uncertainty of denom-
inator coefficients will have to be transformed into an additive error model
by series expansion. Methods for series expansion are discussed in detail in
[37]. In general, first or modified second order expansions will provide an
approximation with sufficient accuracy. The estimation of error models for

17For models of time-invariant systems, which pass standard validation tests, the variance
error will, in general, dominate the bias error, see [39]. A reasonable, but perhaps somewhat
conservative, estimate of the total model error is then obtained by doubling the parameter
covariance matrix, which is a measure of the variance error.



32 Sternad and Ahlén

ARMAX structures, based on short data records generated by high order
systems, has been investigated recently by Bigi in [42].

For a system with measurable inputs, one way of directly obtaining ex-
tended design models of the type (5.3.6) is from identification experiments
based on functional series expansions Zf\il piBi(qg~!). Here, B;,i=1...M
represents a set of predetermined rational basis functions, such as, e.g. dis-
crete Laguerre functions. A functional series model is linear in the parameters
{p:}. The model structure has received increasing interest as a useful tool in
system identification, see [105] or [106]. If an identification experiment pro-
vides parameter estimates {fo;} and covariances for zero mean errors {Ap;},
we directly obtain the extended design model

M M
P 2 Zﬁ0161+zA]§sz = Po+ AP .
=1 =1

Writing AP in common denominator form and using the covariance ma-
trix for {Ap;} gives the frequency domain variance E(APAP,), which will
be needed in the robust design. See Chapter 5 of [107].

Adjustment to Sets of Spectra or Nyquist Plots. Error models rep-
resenting nonparametric uncertainties can be adjusted directly to frequency
domain data. In that context, a very useful concept is provided by the
stochastic frequency domain theory of Goodwin and Salgado, see [93].

We will next very briefly recapitulate their stochastic embedding concept.
An additive transfer function error AG(e') is viewed as a realization of a
stochastic process in the frequency domain, with zero mean and covariance
function

E{AG(e™")AG, (%7)} & T(e™1,e™?)>0.

For stationary processes, the covariance depends only on the difference
in frequency, I'(e™1, e™2) = T';(e¥“1=%2)), The shape of T, is a measure of
the assumed frequency domain smoothness of realizations of the model error.
The variance (w; — we = 0) is a scale factor for the uncertainty.

The frequency domain stochastic process AG(e™) corresponds to a time-
domain filter with stochastic, zero mean, impulse response coefficients

AG(g™1) = Zgjq_j ; E(gj,90) = (3, 0) - (5.3.8)

Here, v(j,€) can be calculated from the inverse two-dimensional discrete
Fourier transform of I'(e*1,e*2). For stationary stochastic processes in the
frequency domain, the corresponding time-domain process will be white, with

E(g5,9¢) = 7j0j,0 - (5.3.9)
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For example, consider a frequency domain stochastic process H(e™), with
a zero mean Gaussian distribution and with covariance function

aei(wl—wg)

E{H(e™)H.(e*?)} = (5.3.10)

ei(wl—wg) _ )\ :

This process corresponds to the time domain model (5.3.8), (5.3.9), with
Gaussian distributed independent parameters with variances v; = a\. See
[12] by Goodwin et al. By truncating at some j = M for which AM is small,
we obtain

’H(q_l) Rho+...+ th_M

with E(h;)? = a) and E(h;) = 0.

A priori information may be available about the frequency domain distri-
bution of the unmodelled dynamics. It can be incorporated by using a fixed
prefilter, to obtain the total model

AG(g™h) = M(¢g7HNA(g™) . (5.3.11)

Here, M(¢™') is a known shaping filter and N\ (¢7!) is a stationary process
in the frequency domain, with covariance function I'y (ei(‘”l_‘“Z)). Examples
of the use of this modelling procedure can be found in [34, 37] and [93].

Example 5.5. A frequency-shaped error model.

Assume that the variance in the frequency domain of the model error
in can be described by a squared magnitude response of a first order filter.
Then, we may use a model of the type (5.3.11), with

- 1+ng”!
M(q 1) = m . (5312)

Also, assume that the parameter A in (5.3.10) can be tuned to give a rea-
sonable description of the degree of smoothness (in the frequency domain) of
the most probable model errors. The process in (5.3.10) can then be used to
represent the stationary part I‘S(ei(“’l_“&)) of the frequency-domain process.
Truncation of its corresponding time-domain impulse response gives a model
(5.3.11). The error model has the structure introduced in (5.3.6)

14+ngt _
AG(g™Y) = #(ho+h1q_l+...+h1\4q M)y
Bi(¢7")AB(¢™")

Ai(g™)

(5.3.13)
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The covariance matrix of {h;} is Pap = diag(a)\). Note that the model
is characterized by only five parameters: «, A, ai1, 7 and the truncation
length M. |

Pragmatic Tuning of Covariances. Even if the statistics is hard to ob-
tain, one could still use the elements of covariance matrices pragmatically, as
robustness ”tuning knobs”. They are then used similarly as when weighting
matrices are adjusted in LQG controller design. One objective could be to
obtain as good a performance as possible, under the constraint of a prespec-
ified level of degradation in the nominal case. Another objective could be
to limit the maximal error within a specified range of model dynamics. The
error models may also be used to account for a slowly time-varying dynamics,
see [38].

5.3.5 Covariance Matrices for the Stochastic Coeflicients

In order to represent the uncertainties of the system in a natural way, covari-
ance matrices will be organized as follows. The 7j-th element of a stochastic
polynomial matrix AP can be expressed as

APY(g") = " (¢ )Py (5.3.14)
where

eT(g ) =0 ¢ 'q7%) B = (ApY Apf . Ap)T . (5.3.15)

The cross covariance matrix ngr,)e k), of dimension dp + 1|dp + 1, between

elements of AP%(g~') and AP (q™'), is given by

E(ApY)(Apeh)* ... E(Apd)(Apsy)*
P%;ek) = EP;;Pei, = : : (5.3.16)
E(Api)(ApsF) ... E(Api)(Apsy)®

where PX{;” ) is Hermitian and positive semidefinite, while PX{QM) = (Pgllf;ij ) )-.
Thus,

E(APIAPH) = E(oT (¢ )pipine” (@) = ¢"PREPOT . (5.3.17)

With autocovariances, (i7) = (¢k), we model the uncertainty within each
input—output pair. Cross-dependencies between different transfer functions
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may also be known. For example, uncertainty in one single physical param-
eter may very well enter into several transfer functions between inputs and
outputs. Such effects are captured by cross covariances, (i5) # (¢k).

We collect all matrices of type (5.3.16) into one large covariance matrix,
organized as Pap =

pUL™ o pQULT™ T plLmy . pULmm
P(Al;:"’“) P(Al;’,:”“") | P(Al’;:,”"l) P(Al’,f:"”m)
PLtm™ ] pirymm
P(A";:,"’”) pg;.iw | Pg‘é""l) PX;;':“"T")

(5.3.18)

If AP has dimension n|m, then Pap has nm by nm blocks PXJP’,M). The
structure of (5.3.18) is useful from a design point of view. If, for example, a
multivariable moving average model, or FIR model, is to be identified, then
(5.3.18) is the natural way of representing the covariance matrix. If we instead
prefer to use the blocks PX{;M) of (5.3.18) as multivariable “tuning knobs”, a
given amount of uncertainty can be assigned to a specific input-output pair.

5.3.6 Design of the Cautious Wiener Filter

Nominal Wiener filter design involves two key elements, namely a spectral
factorization and a Diophantine equation. These two elements will remain
crucial also when models are uncertain. However, they will now be based on
the average behaviour with respect to an underlying set of systems.

Averaged Spectral Factorization. We define an averaged spectral fac-
tor B(¢g~!) as the numerator polynomial matrix of an averaged innovations
model. It constitutes a key element of the robust filter. The average, over
the set of models, of the spectral density matrix ®,(e™) of the measurement
y(k) in (5.3.3) is given by

1

E{®,(¢*)} = 55 AT'NT'BB.NTTAT

The square polynomial matrix B(z~1) is given by the stable solution to
B8, = E{NBCC.B.N, + DAMM,A.D,} . (5.3.19)

Note that N~! and A" are diagonal, and will thus commute. The averaged
second order statistics of y(k) is thus described by the same spectral density
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as for a vector-ARMA model

1
g(k) = 5A—lN—lﬁe(k) (5.3.20)
where €(k) is white with a unit covariance matrix. This model is denoted
the averaged innovations model. (Note that §(k) # y(k), but ®5(e™) =
E{®,(e™)}). When constructing the right-hand side of (5.3.19), the follow-

ing results are useful.

Lemma 5.1. Let H(q,q~ ') be an m|m polynomial matrix with double-
sided polynomial elements having stochastic coefficients. Also, let G(q™!)
be an n|m polynomial matrix with polynomial elements having stochastic
coefficients, independent of all those of H. Then,

E[GHG.] = E[GE(H)G.] (5.3.21)

0O
Proof. See [4].

Now, introduce the double-sided polynomial matrices

CC, 2 E(cc,) ; BeBe, 2 E(BCC,B,) ; MM, 2 E(MM,) .
(5.3.22)
Invoking (5.3.6) and using the fact that the stochastic coefficients are assumed

to be zero mean, gives

éé* - éaéo* + élE_(ACAC*)él*
B¢B¢c. = B,CC.B,.+ BE(ABCC.AB,)B;., (5.3.23)
MM* == M0M0*+M1E(AMAM*)M1* .

Factorizations to obtain é, B¢ ete. need not be performed. The double-
sided polynomial matrices are expressed as C'C, etc. merely to simplify the
notation.

Lemma 5.2. Let Assumption 5.3 hold. By using (5.3.22), (5.3.23) and invok-
ing Lemma 5.1, the averaged spectral factorization (5.3.19) can be expressed
as
BB,=NBcB¢o.N,+ DAMM,A,D, (5.3.24)
O
Proof. See [4].

With a given right-hand side, equation (5.3.24) is just an ordinary poly-
nomial matrix left spectral factorization, of the type encountered in (5.2.12).
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It is solvable under the following mild assumption.

Assumption 5.4. The averaged spectral density matrix E{®,(e*)} is non-
singular for all w.

This assumption is equivalent to the right-hand side of (5.3.24) being
nonsingular on |z| = 1. Then, the solution to (5.3.24) is unique, up to
a right orthogonal factor. Under Assumption 5.4, a solution exists, with
B having nonsingular leading coefficient matrix 3(0). Its degree, n3, will
be determined by the maximal degree of the two right-hand side terms in
(5.3.24).

To obtain the right-hand side of (5.3.24), averaged polynomial matrices
like E(APHAP,) have to be computed, where H(q,q™ ') = CC,orl It
is shown in [4] that the ij-th element of E(APHAP,) is given by

E[APHAP,);; =
e T[S e
[ 0 o] pilgm)  plimam) L0 e
(5.3.25)

where ¢! is defined in (5.3.15). The block covariance matrix in (5.3.25)
is obtained by taking the block-transpose of the ij-th block [ - ] of Pap in
(5.3.18). Average factors in (5.3.23) are readily obtained by substituting AC),
AB and AM for AP in (5.3.25).

We are now ready to present the solution to the robust Hs filter design
problem.

The Cautious Multivariable Wiener Filter.

Theorem 5.2. Assume an extended design model (5.3.3), (5.3.5), (5.3.6),
to be given, with known covariance matrices (5.3.18). Under Assumptions
5.3 and 5.4, a realizable estimator of z(k) then minimizes the averaged MSE
(5.2.5), among all linear time-invariant estimators based on y(k + m), if and
only if it has the same coprime factors as

1
2(klk +m) = Ry(k+m) = TV‘IQﬁ_lNA y(k+m) . (5.3.26)
Here, B(q~') is obtained from (5.3.24), while Q(q~!) together with L.(q),
both of dimensions £|p, is the unique solution to the unilateral Diophantine
equation
¢-"VSCC,B,.N,=Qp3,+qL.UTDI, (5.3.27)
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with generic'® degrees

nQ = max(nd+ns+né+m,nu+nt+nd—1)

nL, = max(né -+ nBo +nn —m, ’I’Lﬂ) -1 (5328)

where ns = deg S etc. When applying the estimator (5.3.26) on an ensemble
of systems, the minimal criterion value becomes

1

trEE(e(k)e(k)* )min = tr=—— {L.B8;'87'L +
215 Jiz1=1
n ;Vsé[l - C.B..N.B'TINB,C| C.5.V &
UTDD.T.U, n D oxdV Iy o % V oy >
(5.3.29)
O

Proof. See [4], where the variational approach outlined in Sect. 5.2.3 is uti-
lized, with EE(-) substituted for E(-). In the case considered here, with a
known filter W, it is straightforward to show that the cautious Wiener filter
minimizes not only the scalar averaged MSE, but also the average covariance
matrix EEe(k)e(k)*.

Remarks. Note the very close formal similarity of (5.3.26), (5.3.27) and
(5.3.29) to their nominal counterparts (5.2.19), (5.2.20) and (5.2.23), respec-
tively. The only new required type of computation, as compared to the
nominal case described in Sect. 5.2.3, is the calculation of averaged polyno-
mials in (5.3.23) performed by using (5.3.25). Design examples can be found
in [4] and in [37].

Since both V' and 3 are stable, the estimator R will be stable!®. Since
V(0) and B(0) are nonsingular, R will be causal.

Note that the diagonal matrix NA = N,N; A,A; appears explicitly in
the filter (5.3.26). Important properties of the robust estimator are evident
by direct inspection. For example, assume some diagonal elements of IV 1_1 or
AT ! in the error models to have resonance peaks, indicating large uncertainty
at the corresponding frequencies. Then, the filter will have notches, so the
filter gain from the uncertain components of y(k + m) will be low at the
relevant frequencies.

The nominal Wiener filter (5.2.19) has a whitening filter as a right factor.
The robust estimator has a similar structure. After multiplying R by the
stable common factor D/D, the cautious filter (5.3.26) will contain 3~ N AD

181n special cases, the degrees may be lower.

193table common factors may exist in (5.3.26). They could be detected by calculating
invariant polynomials of the involved matrices. If such factors have zeros close to the unit
circle, it is advisable to cancel them before the filter is implemented. Otherwise, slowly
decaying (initial) transients may deteriorate the filtering performance.
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as right factor. This averaged counterpart of a whitening filter is the inverse
of the averaged innovations model (5.3.20).

The model structure (5.3.5)-(5.3.6) was selected to obtain a few simple de-
sign equations. Other choices are possible, but lead to various complications.
For example, if stochastic polynomials had been introduced in the denomi-
nators, no exact analytical solution could have been obtained. Also stability
would have been a problem. The use of general left MFD representations, in-
stead of forms with diagonal denominators or common denominators, would
have led to a solution involving five coprime factorizations. Such a solution
is presented in [37], but it provides less physical insight. It does also ex-
hibit worse numerical behaviour, since algorithms for coprime factorization
are numerically sensitive.

Robust design also makes the solution less numerically sensitive. Almost
common factors of det 3, and UT' D with zeros close to |z| = 1 would make
the solution of (5.3.27) numerically sensitive. The averaged spectral factor
B will, in general, have its zeros more distant from the unit circle than the
nominal spectral factor, given by (5.2.12). This reduces the numerical diffi-
culty of solving both (5.3.24) and (5.3.27).

The Equivalent-Noise Interpretation. For every cautious Wiener filter,
there exists a system (without uncertainty) for which this estimator is the
optimal Wiener filter, see [37]. For example, if G = I,,, then we can utilize
the modified signal and noise spectral density matrices

FoFor + E(AFAF,) 5 HoHow + E(AHAH,) (5.3.30)

to obtain the averaged innovations model. The spectral densities (5.3.30)
may be obtained directly from frequency domain data if such are available,
by simply averaging the spectral densities of the model sets F and .

It is also possible to represent model uncertainties by coloured noises,
and then to design a Wiener filter for the corresponding system. This corre-
spondence provides a way of understanding the structure of the above design
equations. However, we do not recommend the use of an equivalent noise-
approach in the actual design, for two reasons:

e It is far from trivial to obtain an equivalent noise representation of the
uncertainties in the block G, with appropriate colour and covariance
structure. This is true in particular if the block F is also uncertain,
and if the problem is multivariable.

e It is an advantage from a design point of view to have separate tools
which handle different aspects of the design: Error models to represent
the effect of modelling uncertainty; noise models to represent distur-
bances; criterion weighting functions to reflect the priorities of the user.
A method which does not distinguish between these aspects will tend
to confuse the designer.
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The Attainable Limit of Estimator Performance. The attainable per-
formance improves monotonically with an increasing smoothing lag m. The
following result gives the lower bound of the averaged estimation error. This
bound can be approached pointwise in the frequency domain for m < oo, by
using a criterion filter WW with a high resonance peak.

Corollary 5.1. The limiting estimator for m — oo, the non-realizable cau-
tious Wiener filter, can be expressed as
1 -~ =

lim ¢"R = =SCC,B,.N.B;!37!NA . (5.3.31)

m— o0 T

Its average performance is given by (5.3.29) with L = 0. If W = 1,, the trace
of the spectral density of the lower bound of the estimation error z(k)—Z(k|k+
m) is

lim trEE ®,_:(e™) =

m— o0

_ 1 > A f “lg-Inrfr & F

- TDD*T*tr{SC [In ~¢.B,.N.A7'3 NB,,C] C*S*} . (5.3.32)
The bound can be attained at a frequency wy by an estimator with finite
smoothing lag, if the estimator is designed using a weighted criterion where

U(e ™) =0 (5.3.33)

O

Proof. In a similar way as in Appendix A.3 of [59], it is straightforward to
show that L — 0 as m — oo in (5.3.27). Thus, (5.3.27) gives

lim ¢"Q =VSCC.B,.N.8;* . (5.3.34)

m—ro0

The substitution of this expression into (5.3.26) gives (5.3.31). The use of
L=0,V =1, and U =1 in the integrand of (5.3.29) gives (5.3.32). When
U(e~*1) = 0, we obtain the same effect on the Diophantine equation (5.3.27)
at the frequency wy as if L — 0: the rightmost term vanishes. Thus, at wy,
the gain and the phase of the elements of the polynomial matrix ¢™Q are
approximately equal to those of (5.3.34) and the estimation error approaches
the lower bound (5.3.32). [ |

Remark. Note that for realizable estimators (m finite) the lower bound
(5.3.32) is only attainable at distinct frequencies w; by means of frequency
weighting. For frequencies outside the bandwidth of W, the estimate may
be severely degraded.
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5.4 Robust H, Filter Design Based on
State-Space Models with Parametric
Uncertainty

Let us now consider state space models with parametric uncertainty obtained,
for example, by physical modelling. The section illustrates the utility of
combining state space and polynomial representations. It summarizes re-
sults from [36] and [37]. Extended design models of the type (5.3.1) will be
obtained by a series expansion methodology outlined in Sect. 5.4.1 below,
and discussed in more detail in [37]. The method is an improvement upon a
similar suggestion by Speyer and Gustafsson [32], in that £’th order expan-
sions will lead to modified state space models of order n(¢ + 1), rather than
n(€+1)2. The subsequent design of an averaged robust H, estimator can be
performed either by using the cautious Wiener estimator of Theorem 5.2 or
by designing a robustified Kalman estimator, as outlined in Sect. 5.4.2.

The results of [36] are here generalized slightly to include time-varying
measurement equations. The resulting estimators are then directly appli-
cable as robust adaptive algorithms, which can be applied for tracking the
parameters of linear regression models, as discussed briefly in Sect. 5.5.

5.4.1 Series Expansion

Assume a set of stable discrete-time models

z(k+1) = (Ao+AA(p))z(k) + (Bo + AB(p))e(k)
y(k) = C(k)a(k) + (Mo + AM(p)v(k) (5.4.1)
z(k) = Lx(k)

where z(k) € R™ is the state vector and e(k) € R™ is zero mean process
noise with unit covariance matrix. The output y(k) € RP” is the measurement
signal, with v(k) € RP being white zero mean noise having unit covariance
matrix. The vector z(k) € R! is to be estimated. The nominal model is

.To(k + 1) = ono(k)) + Boe(k) (542)

Yo(k) = C(k)xo(k) + Mov(k) .

We assume the matrices AA, AB and AM to be known functions of the
unknown parameter vector p. The vector p may, for example, contain uncer-
tain physical parameters of a continuous-time model. The robust estimation
of z(k) will be founded on the following assumptions:

e The uncertain parameters p are treated as if they were stochastic vari-
ables. Their realizations represent particular models in the set.
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e All models (5.4.1) are assumed internally and BIBO stable. In other
words, the eigenvalues of Ag + AA(p) are located in |z| < 1 for all
admissible p, and the elements of C(k) are bounded.

e The effect of p on the set of models (5.4.1) is described by known covari-
ances between elements of the matrices AA, AB and AM. The nominal
model (5.4.2) is selected as the average model of the set; AA; AB and
AM have mean value zero.

The aim is to obtain an approximate modified Kalman estimator which
minimizes the criterion (5.2.5), i.e. the average, over the set of models, of the
mean square estimation error.

In order to apply the framework of Sect. 5.3, a model with uncertainties
in the system matrix must be approximated by a new model, in which the
uncertainties appear only in the input matrix. One way of doing this is to
use series expansion, based on the denominator terms of a transfer function
representation of (5.4.1). See Sect. 5 of [34] or Chapter 3 of [37]. Here we shall,
instead, perform the expansion directly in the state space representation, by
augmenting the nominal state vector zo(k + 1) by additional vectors. These
vectors correspond to sets of perturbations caused by the different powers of
AA occurring in a series expansion.

Introduce the set of possible state trajectory variations dz(k + 1), caused
by AA(p) and AB(p), such that

x(k+1)=zo(k+ 1) + dx(k+ 1) (5.4.3)
where g is the nominal state vector given by (5.4.2) and
dz(k +1) = AAxzo(k) + Agdx(k) + ABe(k) + AAdz(k) . (5.4.4)

The equality (5.4.4) is an exact expression derived from (5.4.1). We now
express dz(k) in (5.4.4) as

ox(k) = 21 (k) + za (k) + ... + za(k)

for a given expansion order d. The terms z.,(k), m < d are defined as being
affected by powers of AA up to m only. Specifying state equations for the
additional state vectors, x.,(k), is now a matter of pairing terms z,,(k + 1)
on the left-hand side of (5.4.4) with appropriate terms on the right-hand side.
The choice

l’l(k + 1) = AA.I’()(]C) + Aol’l (k’) + ABe(k)
AoiL‘Q(k) + AAZL‘l(k)

8
M
—~
>
—
~
|

.’Ed(k + 1) = ond(k) + AA.Z‘d_l(k) + AAZL‘d(k)
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yields the augmented state space model

zo(k+1) Ay 0 ... 0 zo(k) e
X k 1 . T k
( .+ ) _ AA A : ( ) 4 0 (k)
: . ] 0 : :
za(k +1) 0 AA Ag+AA | L za(k) 0
A
z(k) = mo(k)+z1(k)+...za(k) . (5.4.5)

So far, no approximation has been made. The term AA in the lower right
corner of A represents the effect of (d + 1)’th and higher powers of AA on
z(k). We neglect this term from now on, and thus discard terms of higher
order than d. The characteristic polynomial is then given by

det(2X(g11)n — A) = det(2I, — Ag)*™!

so perturbations will no longer affect any transfer function denominator.

To keep the notation simple, we shall in the sequel specialize to first
order expansions. By transforming to an input-output model in forward
shift operator form, we then obtain

2(k) = [T, T, ]| oo qIn‘i A, ]_ [fﬁ ]e(k). (5.4.6)

Now, introduce the n|n polynomial matrices D(q) and AA(q) as a solu-
tion to the coprime factorization

D(g)AA = AA(q)(qL, — Ao) (5.4.7)

where l~)(q) should contain no stochastic coefficients?® and deg det D = n.
Then, (5.4.6) can be written as a left matrix fraction description

z(k) =
(gL, — Ag) ™' (Bo + AB + AA(gI, — Ag)~'By)e(k)
= (g, — Ao) "' D (g)(D(g)(Bo + AB) + AA(q)Bo)e(k)
2 D (q)C(g)e(k) (5.4.8)

20This step is superfluous if the original system is realized in diagonal form. As explained
in [37], the factorization actually corresponds to a polynomial matrix spectral factorization.
A d’th order expansion will require d factorizations of the type (5.4.7).
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where degdet D(q) = 2n. This representation is of the form (5.3.1), with
Fo = (qdln— AO)_1B0
~—1 ~ —
AF = (gl —A0)™'D (¢9)(D(9)AB +AA(g)Bo) -

It can easily be converted to backward shift operator form. The input-
output representation could be complemented by stochastic additive error
models which represent unmodelled higher-order dynamics.

5.4.2 The Robust Linear State Estimator

The model (5.4.8) can form the basis of a robust Wiener filter design, as
described in Sect. 5.3, in which also uncertainty in a time-invariant matrix C
of (5.4.1) can be handled. If we prefer to work with state space estimators,
the set of models (5.4.8) can be realized on observable state space form [55],
with 2n states:

£k +1) = FE(R) + (Go + AG)e(k) ; z(k) = HE(R) (5.4.9)

where AG has zero mean. Note that since the denominator matrix D(q)
of (5.4.8) contains no uncertain coefficients, neither will F in (5.4.9). The
covariance matrix of the uncertain elements of AG in (5.4.9) can be calculated
straightforwardly from the covariances of the elements of AA and AB in
(5.4.1).

Let us restrict attention to linear estimators!. The model (5.4.9) can now
be utilized for designing robust Kalman predictors, filters and smoothers,
using well-known techniques [56]. For example, it can be shown, see [37]
Chapter 7, that if AM is independent of AA, AB and if e(k) is uncorrelated
to v(s) for all k, s, then the one-step predictor minimizing (5.3.2) is given by

~

§(k+1) = Fi(k)+K(k)(y(k) — Ci(k)E(k))
2(k+1) = LHE(k+1)

with K(k) calculated from

K(k) = FP(k)CI(k)(C1(k)P(E)CE (k) +Ry)™! (5.4.10)
P(k+1) = FPkFT +R,
— FP(k)C{ (k)(C1(k)P(k)CT (k) + Rg) "' Cy (k)P(K)F”

where C, (k) 2 C(k)H, with initial values

£(0) = EE¢(0) 2 ¢°

21The variable AGe(k) will, in general, not be Gaussian. Robustified Kalman esti-
mators are, however, the optimal linear estimators for arbitrary noise and uncertainty
distributions.




Ha Design of Nominal and Robust Discrete Time Filters 45

P(0) = EE(£0) - €°)(£0) - €))7 .

The robustifying modified covariance matrices are given by
R; = GGl + E(AGAGT)

R; = MoM! + E(AMAMT) (5.4.11)

with AG and AM, both with zero mean, introduced in (5.4.9) and (5.4.1),
respectively.
Numerical illustrations can be found in [36] and in Chapter 7 of [37].

5.5 Parameter Tracking

In digital communication and, in particular, in digital mobile radio appli-
cations, the problem of adjusting filters to a rapidly time-varying dynamics
is encountered. If models cannot be re-adjusted with sufficient speed and
accuracy, sophisticated tools for model-based filtering will be of little utility.

Models of time-varying communication channels, can often be represented
in a linear regression form

y(k) = " (K)A(k) + =(k) (5.5.1)
where ¢* (k) is a regressor matrix containing known signals, é(k) is a column
parameter vector and e(k) is a vector of residuals.?? If the model structure is
correct, it becomes meaningful to formulate the problem of model adjustment
as a problem of following (tracking) a vector 8(k) which parametrizes a system

y(k) = " (k)0(k) + w(k) (5-5.2)

where the disturbance w(k) is assumed independent of both ¢*(k) and 6(k).

Parameter tracking is normally performed by utilizing the LMS algorithm
or exponentially windowed RLS [7, 8, 10, 11, 103]. The initial convergence of
the Newton-based RLS algorithm is much faster than that of the gradient-
based LMS, but their performance when tracking continuously changing pa-
rameters is about equal [108]. In general, both LMS and windowed RLS
algorithms turn out to be structurally mismatched to the tracking problem
at hand [50, 54].

If the dynamics of the elements of #(k) and the noise have known second
order moments, then a Kalman-based adaptation algorithm represents the
optimal scheme, which attains the best tracking performance. In many prob-
lems, the dynamic properties of time-varying parameters are approximately

22In an adaptive equalizer which runs in decision-directed mode, the elements of ¢* (k)
contain estimates of transmitted symbols. These estimates are obtained from an equalizer
or Viterbi detector which, in its turn, is adjusted based on the the changing channel model.
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known. They are, however, rarely known exactly. Methods for robust model-
based parameter tracking would therefore be of interest. The robust Kalman
scheme outlined in Sect. 5.4 can be used in such cases.

Let z(k) = Lz(k) in (5.4.1) represent the parameter vector 6(k), to be
tracked. The state update equation will then represent the set of possible
parameter dynamics, whereas the measurement equation corresponds to the
linear regression (5.5.2)

y(k) = 0" (k)O(k) + w(k) = ¢* (k)La(k) + (M, + AM)v(k) . (5.5.3)

Thus, C(k) = ¢*(k)L. The cautious Kalman predictor outlined in Sect. 5.4.2
can now be used directly for tracking the parameters of linear regression
models.

Kalman-based adaptation algorithms require a Riccati update step at
each sample, and they will therefore have an unacceptable complexity in
many high-speed applications. Algorithms of lower computational complex-
ity, which can still take a priori knowledge about the statistical proper-
ties of the parameter variations into account, have therefore been sought
[50, 109, 110].

By using the polynomial approach, a family of algorithms with low compu-
tational complexity, but still close to optimal performance, has been derived
by Lindbom in [54]. The algorithms within this family have a constant adap-
tation gain, and will require no Riccati update. They are characterized by
the general recursive structure

(k) = y(k) — " (WB(kIE — 1) (5.5.4)

6(k +mlk) = F(g7)0(k +m — 1|k — 1) + G (g~ V) p(k)e (k)

which includes predictors, filters and fixed-lag smoothers. Above, the poly-
nomial matrix F' is obtained directly from the assumed stochastic model for
the parameter variations, while the stable rational matrix G,, is obtained via
spectral factorization and Diophantine design equations, which need to be re-
computed only if the model describing the parameter variations changes. In
simple but useful special cases, no design equations at all need to be solved.
The complexity of the algorithm (5.5.4) will increase only linearly with the
dimension of é(k), if the regressor correlation matrix is known.

The thesis [54] also includes an analysis of tracking algorithms and a case
study, describing adaptive equalization in the US D-AMPS standard (IS-54).
For these two purposes, as well as for the design of constant-gain tracking
algorithms, the use of a polynomial equations approach has turned out to be
very fruitful.

Acknowledgement. We thank Claes Tidestav for many useful comments
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