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Chapter 5

Optimal Filtering Problems

A Ahlén and M Sternad

5.1 Introduction

In this chapter, we shall demonstrate the power and utility of the polynomial ap-
proach in the area of signal processing and communications'. By studying specific
model structures, considerable engineering insight can be gained.

Minimisation of mean—square error criteria by linear filters will be considered. We
shall focus on the optimisation of realisable discrete-time IIR-filters, to be used
for prediction, filtering or smoothing of signals. Stochastic models of possibly
complex-valued signals are assumed known.

Historically, such problems have been dealt with by applying the classical Wiener—
Hopf approach. See e.g. [12], [14], [37], [64]. Even after the Kalman—filter break-
through [38], many researchers still prefer the frequency domain approach, despite
its inferior numerical properties for high order problems. One reason is the rela-
tive ease with which an obtained filter can be examined. A quick inspection of the
poles and zeros roughly tells us what filter properties that could be expected.

While the classical Wiener solution is conceptually elegant it has, until recently,
been rather intractable to perform the causal bracket operation {-}, central to the
design of realisable filters. In particular, Wiener-smoothing has not been straight-
forward. With the polynomial approach, pioneered in [40], Diophantine equations
now offer an efficient way of automatising the causul bracket operation.

Polynomial equations were first used among control engineers. An early result is
due to Astrém in 1970 [8]. To obtain minimum variance control laws, he derived
a Diophantine equation for calculating the d—step prediction of an ARMA process
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with C(q™') stable and e(t) white and zero mean. The linear d-step predictor,
which minimises the mean square estimation error, is given by

g(tlt — d) = gggjiy(t —d) . (5.1.2)

Here, the polynomial G(q™!) of degree n — 1, together with a polynomial F(¢™')
of of degree d — 1, is the solution to the Diophantine equation

C(q™") = q¢"G(q™") + D(¢")F(¢™) . (5.1.3)

See Theorem 3.1 of [8]. This result was later generalised to multivariable systems
by Borison [13]. Compared to earlier Wiener methods, which where based on the
manipulation of auto- and cross covariance functions, the polynomial approach of-
fered a considerable simplification. Another contribution (which did not explicitely
use Diophantine equations), was the selftuning smoother of Hagander and Wit-
tenmark [33]. See also [49]. Other early contributions were a filter for a signal
vector in white measurement noise [39], and a polynomial method for computing
the gain matrix of a Kalman filter [41], both by Kugera.

Fairly recently, the polynomial systems framework has been more systematically
utilised to solve signal processing and communications problems. See e.g. [2], [4],
[19], [20], (28], [31], [32], [4T7], [48], [54], [57]. There has been some work related
to time-varying filter design [29]. Effort has also been spent on relating Kalman,
Wiener, and polynomial methods [9], [28], [44], [56].

When a polynomial approach is used, estimators are calculated from three types of
equations: Diophantine equations, polynomial spectral factorisations and coprime
factorisations of polynomial matrices. Two dominating approaches have been used
for deriving these sets of equations: the “wariational approach” developed in [4],
see also [20], [58], [59] and the “completing the squares approach” used e.g. in [28],
[40], [41], [44] and [54]. Lately, the inner—outer factorisation approach, see e.g.
[63], has been utilised in [15]. In [5], that method is interpreted in the polynomial
systems framework.

We shall discuss how the classical Wiener approach and the inner—outer factori-
sation approach relate to the polynomial methods based on variational arguments
and completing the squares. The purpose of this discussion is not only to compare
advantages and drawbacks, but also to emphasise similarities, to link and increase
understanding of the different approaches. To understand how they relate to each
other, design equations for a simple filtering problem will be derived using each
approach. This is the objective of Section 5.3.

The polynomial approach, based on variational arguments, is then used to study
a collection of signal processing and communications problems in Section 5.4-5.6.
The selected special problems have features of general interest: multisignal esti-
mation (Section 5.4), discrete time design based on a continuous time problem
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formulation (Section 5.5), and the approximation of a problem involving a static
nonlinearity by a Hs problem (Section 5.6). Numerical examples are not included,
but can be found in the referenced papers. Some concluding remarks, discussing
characteristics and suitability of the polynomial approach, are found in Section 5.7.

Remarks on the notation: Let p} denote the complex conjugate of polynomial
coefficient p;. For any complex-valued polynomial P(¢™') = po + p1g™t + ... +
Pupq~ ™ in the backward shift operator g7 (¢7'y(t) = y(t — 1)), define

A *
Pe=py+pig+ ...+ ppq"

PEG™P =ph +phpaq e 05T

Whenever a polynomial in positive powers of ¢ is introduced, it will be denoted
with a star, P,. Rational matrices, or transfer function matrices, are denoted by
script letters, for example as R(¢™!). For polynomial matrices, P, means complex
conjugate transpose. We denote the trace of P by trP. When appropriate, the
complex variable z is substituted for the forward shift operator ¢. The degree
of a polynomial matrix is the highest degree of any of its polynomial elements.
Polynomial matrices P(q™!) are called stable if all zeros of det P(27!) are located
in |2| < 1. For marginally stable polynomial matrices, some zeros of det P(z~1)
are located on |z| = 1. Arguments of polynomials and rational matrices are often
omitted, when there is no risk for misunderstanding.

5.2 A set of filtering problems

A very general linear filtering problem can be formulated in the following way.
Based on measurements z(t), up to time t + m, a complex—valued vector f(t) =
(Fi(®) ... fo(t))T of desired signals is sought. The signals are described by the linear
discrete—time stochastic system

(59)

Filt+m) = Ru(gHz(t+m) . (5.2.2)

Here, G,, D,, and R, are rational matrices of appropriate dimensions and {u,(¢)}
is a stochastic process, not necessarily white. The weighted estimation error,
W(gD)[f () — f(t|t + m)], is to be minimised according to some norm, for exam-
ple Hy or He,. See Figure 5.1. A solution to this problem in a H; sense will be
discussed in Section 5.4.

( gi((‘f]__ll)) ) uy () (5.2.1)

and the estimator is

While (5.2.1) is general, it lacks sufficient degree of structure, to obtain solutions
which provide useful engineering insight. For the purpose of of this chapter, we
will therefore introduce a more detailed structure. It encompasses a number of
special cases, to be separately studied in Sections 5.3-5.6. We split the vector
u,(t) into two parts
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Figure 5.1: A general filtering problem formulation.

where w(t) represents additive measurement noise, uncorrelated to the desired
signal f(t). We also introduce explicit stochastic models u(t) = F(g~1)e(t) and
w(t) = H(g™')v(t), with F and H not necessarily stable. The noises {e(¢)} and
{v(¢)} are mutually uncorrelated and stationary vector sequences. They have zero
means® and covariance matrices ¢ > 0 and 3 > 0, of dimensions k|k and r|r,
respectively. Furthermore, define the measurement vector as

2(t) & ( Zgg ) (5.2.3)

where y(¢) = (y1(2) ... y,(t))T are noisy measurements and a(t) = (ay(t)...an(t))T
is an auxilliary measurement vector, uncorrupted by the noise w(¢). (One example
could be directly measurable inputs to the system.) The model structure (5.2.1)

is thus specialised to
u(t)
w(t)

(1) G) 1
(aa)) _ (ga@-l) o)(
#(t) i) 0

() = (787 ) (0)

Compare to (5.2.1), with D, = [D 0]. Above, G, G,, F, H, and D are transfer
function matrices of dimensions p|s, h|s, s|k, p|r, and £|s respectively. See Fig-
ure 5.2. From the measurements z(¢), up to time ¢ + m, our aim is to optimise a
linear estimator of f(t)

(5.2.4)

ftlt+m) = Ro(¢)a(t+m) 5 Ralg™) = [R(g™) Ralg™)] (5.2.5)

with R and R, being stable and causal transfer function matrices of dimensions
£|p and £|h, respectively. Depending on m, the estimator constitutes a predictor
(m < 0), a filter (m = 0) or a fixed lag smoother (m > 0).

20One way of handling nonzero means in on—line applications is outlined in subsection 5.3.9.
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Figure 5.2: Unifying structure for a collection of filtering problems. The signal
f(t) is to be estimated from data up to time ¢ + m.

We will consider minimisation of the mean square estimation error (MSE). Intro-
duce the quadratic criterion

¢
J = trE(e(t)e*(t)) = E(e*(t)e(®)) = ;Elsi(t)lz (5.2.6)
where
e(t) = (ex(t)...e(t))" & W(g™H(FQ) - ftlt+m)) - (5.2.7)

Above, W(q!) is a stable and causal transfer function weighting matrix, of dimen-
sion £|¢. It may be used to emphasise filtering performance in certain frequency
ranges. The criterion (5.2.6) is to be minimised, under the constraint of realisabil-
ity (internal stability and causality) of the filter R,(¢7").

The structure depicted in Figure 5.2 covers a large set of different problems. We
shall in this chapter discuss the following collection:

e Scalar prediction, filtering or smoothing: G = D =W =1, G, = 0. (Sec-
tion 5.3.)

e Multivariable deconvolution and linear equalisation: G, = 0. (Section 5.4.)

o Numerical differentiation of scalar signals and state estimation: W = 1,
G, = 0, u(t) state vector, G and D constant vectors. (Section 5.5.)

e Decision feedback equalisation of a scalar symbol sequence: W =F =D =
1, Go = ¢"™ 1. (Section 5.6.)




5.3 Solution methods

We have recently investigated and developed a variational approach for solving
filtering problems as well as LQG control problems. We open this section by a
presentation of the underlying general ideas, before going into details and compar-
isons with other approaches. (Application to Hy-optimal control is discussed in

[58] and in Chapter 3 of this volume [59].)

5.3.1 Optimisation by variational arguments

Consider the criterion (5.2.6), (5.2.7) and the estimator (5.2.5). Introduce an
alternative weighted estimate

dtlt+m) = W(g)f(tlt+m)+v(t) = Wg™Ra(g™)z(t +m) + (1) (5.3.1)

where a stationary signal v(t) represents a modification of the (weighted) estimate
(5.2.5). See Figure 5.3. The optimal estimate f(t) must be such that no admissible
variation can improve the criterion value.

-~
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Figure 5.3: A variational approach to the general estimation problem (w1th driving
noise £(t) = (e(t)T v(t)T)T), discussed in Section 5.2. The estimate f(t[t + m) is
perturbed by a variation v(?).

Y

W

All admissible variations can be represented by v(¢) = 7 (¢ !)z(t + m), where
T(¢7') is some stable and causal rational matrix. Any nonstationary modes of
z(t) must be cancelled by zeros of 7 (¢7!). Except for these requirements, 7 (¢~1)
is arbitrary. Since W(g¢™)f(t) —cz(t) = &(t)+v(t), the use of the modified estimator
(5.3.1) results in the criterion value

T = wE{W(g ) A(E) — ditlt + m)HW(g)F(E) — d(tlt +m)}”

= tr{Fe(t)e*(t) — Ee(t)v*(t) — Ev(t)e*(t) + Ev(t)v*(t)} (5.3.2)

where &(t) is the error (5.2.7), obtained with the estimator (5.2.5). If the cross—
terms in (5.3.2) are zero, v(t) = 0 evidently minimises J, since trEv(t)v*(t) > 0
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if any component of v(t) has nonzero variance. Then, the estimator (5.2.5) is op-
timal. Orthogonality between the error and any admissible linear function of the
measurements, Ev*(t)e(t) = trE[e(t)v*(t)] = 0, guarantees optimality.

Of the two cross terms, it is sufficient to consider only trEe(t)r*(t), for symmetry
reasons. Now, assume &(¢) in (5.2.7) to be stationary. (This is evidently true if
z(t) and f(t) are stationary, since W(¢™!) and R,(¢™") are required to be stable.
However, if z(t) or f(¢) arve generated by unstable models, stationarity will have
to be verified separately, after the derivation. This will be exemplified in sub-
section 5.3.9.) Parsevals formula can then be used to convert the orthogonality
requirement trEe(t)v*(t) = 0 into the frequency-domain relation

tr[Ee(t)v*(t)]) = tri. flgzl . Qbey*fli =0 (5.3.3)

The rational £|{-matrix ¢.,» is the cross spectral density. It can be simplified by
using a spectral factorisation, derived by expressing the measurement vector z(t)
in innovations form.

When £ > 1, it seems very hard to determine the estimator from the scalar condi-
tion (5.3.3). An important insight is that the derivation becomes easy if we instead
require Fe(t)v*(t) = 0. This corresponds to the elementwise conditions

dz
() m”-— =1... =1...0 3.
Ben(t)at) = 5 jlﬁzl P m=1...0,n=1 (5.3.4)

which, of course, imply (5.3.3). These ¢* conditions determine the estimator
R.(¢g7'). They are fulfilled if the integrands are made analytic inside the inte-
gration path |z| = 1. All poles inside the unit circle should be cancelled by zeros.

A rational matrix G(27!) can be represented by polynomial matrices as a matrix
fraction description (MED), either left or right: G = AT'B; = ByA;". See [36].
Using the left polynomial matrix fraction description, the relations (5.3.4) can be
evaluated collectively, rather than individually, when ¢ > 1. They then reduce to
a linear polynomial (matrix) equation, a (bilateral) Diophantine equation.

The variational approach can be summarised as a step by step procedure.

1. Parametrise the system by rational transfer functions, represented by poly-
nomial fractions or left MFD’s. Define a polynomial spectral factorisation
from the spectral density of z(t).

2. Define the estimation error £(t) and introduce an admissible variation »(t) of
the estimate. Express Ee(t)v*(t) in the frequency domain using Parseval’s
formula and simplify, by inserting the spectral factorisation.

3. Fulfill the orthogonality requirement Ee(t)v*(t) = 0 by cancelling all poles
in |z] < 1, in every element of the integrand, by zeros. This leads to linear
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polynomial (matrix) equation(s), which determines the estimator. For stable
systems, the derivation ends here.

4. For marginally stable and unstable signal-generating systems, verify station-
arity of (t).2

For some problems, the solution is simplified if the variational term is set to a sum
of several terms, for example, v(t) = T1y(t+ m) + Taa(t + m). Orthogonality with
respect to each of them, separately, may be achieved. Instead of one large design
equation, several smaller ones can then be obtained in Step 3. This situation oc-
curs, when more than one filter is to be optimised and at least one of the filters can
be attached to one of the driving noises only. The decision feedback equalisation
problem, discussed in.Section 5.6, and the feedforward—feedback control problem,
see the proof of Theorem 3.1 in Chapter 3 of this volume, are such cases.

More details on the above technique can be found in [4]. See also [58] and [59]
for applications to control problems. It will now be exemplified and compared to
other methods by solving a simple filtering problem. Another detailed illustration
of the approach, for a multisignal estimation problem, is found in Section 5.4.

5.3.2 A scalar filtering problem

Consider the expressions (5.2.4)-(5.2.7) and set G = 1, G, = 0 (= R, = 0),
F=C/D,H=M/N, D=1, W=1,R, =[R 0. Let ¢ = X, ¥ = A,.
Thus, the signal f(¢t) = s(¢) = [C(¢)/D(¢)]e(t) is to be estimated from noisy

measurements

V(0 = 5(0)+ o0 (539

up to time ¢ 4+ m, using an estimator §(t|t + m) = R(¢)y(t + m), with R stable
and causal. See Figure 5.4. All model polynomials, with degree nc, nd, etc, are
monic. Signal and noise models are assumed stable. Discussion of unstable mod-
els is deferred to subsection 5.3.9. The following assumption guarantees problem
solvability.

Assumption A. The signal and noise ARMA-models s(t) = (C/D)e(t) and
w(t) = (M/N)v(t) are stable and causal, and are assumed to have no common
zeros on the unit circle.

The measurements {y(t)} can also be described by the innovations model

y(t) = D(qi(gl;()q_l) (V)ee(t)) (5.3.6)

3For strictly unstable systems (poles in |z] > 1), the solution to the Diophantine equation(s)
obtained in Step 3 may be non—unique, in very rare cases. An additional equation, obtained by
requiring stationarity of £(t), must then be solved in conjunction with the other equations. See
Subsection 5.3.9.




where the innovations sequence \/Ac¢(t) is white and has variance A.. The monic
polynomial B(¢™!) = 1 + Big™! + ... + Bupg™™ is stable, under Assumption A.
It is the (polynomial) spectral factor. We shall now see how the solution to this
problem can be derived in four different ways.

—
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Figure 5.4: A scalar output filtering, prediction or smoothing problem. The signal

{s(#)} is to be estimated from {y(t + m)}. In the noise-free case, this problem
reduces to prediction of an ARMA-process s(t) = (C/D)e(t).

5.3.3 The variational approach
Let us optimise R above, following the procedure for the variational approach.

1. Obtain spectral densities of y(t), ®,(e’), from both (5.3.5) and (5.3.6), and
set them equal. This gives the spectral factorisation equation

rfB« = CC,NN,+ pMM,DD, (5.3.7)

where r =\ /), p C Av/Ae and B(z71) is stable and monic.

2. Use the error expression
e(t) = (1 - ¢™R) e(t) — ¢"R—7v(t) (5.3.8)

and the estimator variation v(t) = 7(¢7!)y(t + m), where T(¢™') is any
stable and causal transfer function. The first cross term in (5.3.2) is then

Ee(t)v*(t) =
C c N\ M M, N\
= b(a- R Ce) (1o Sew) - B (R o) (1o 2ot
(a-aR)Ge) (T Gett)) - B ("Rypo®) (T o)
A }{ (1 - z"R)2""CC.NN, - pRMM.DD.dz
275 Jia=1 DD.,NN, Yz
A (z="CC.NN, — Rrpp.) . dz
213 j|{z]=1 DD,NN, Zz (5-3.9)




where Parseval’s formula and (5.3.7) were utilised.

3. In the integrand of (5.3.9), the stable polynomials D and N contribute poles
in |2| < 1, while the poles of 7, and the zeros of D,N, are in |z| > 1.
Furthermore, 8(2!) = B(z)/2"® may contribute poles at the origin. We see
that N and 8 can be cancelled by R, if R = Ry N/ in (5.3.9). Thus, while
B is cancelled directly, N may be factored out of the numerator, to cancel
N in the denominator. The remaining poles of the integrand inside |z| = 1,
are eliminated if (and only if)

(OGN, = Rarfs) 1

D z:L*

for some polynomial L.(z). It suffices for Ry to be a polynomial, in order
to obtain a (polynomial) Diophantine equation. With Ry = @1 and ¢ ex-
changed for z, we obtain polynomials Qi(¢™!), and L.(¢), as the unique?
solution to the linear Diophantine equation

¢ "CCN, =7rBQ1+qDL, . (5.3.10)

Thus, the optimal estimator

Qi1(¢"HN(¢™)

e+ m) = =g

y(t +m) (5.3.11)

is obtained by solving (5.3.7) for 2 (and r) and (5.3.10) for ()1 (and Ly). It can be
noted that the d-step predictor (5.1.2) for ARMA processes (5.1.1) is a special case
of the solution above %, Note also that the transfer function 7, in the variational
term does not influence the solution at all.

5.3.4 Completing the squares

While the variational method is based on manipulation of the orthogonality rela-
tion Eev* = 0, the “completing the squares” approach is a way of deriving the filter
by manipulating the criterion trE(ec*) itself. The goal is to express the criterion
as a sum of several terms, of which some can be minimised in a straightforward
way. The other terms are either zero or are unaffected by the filter.

The completing the squares approach has been used in the time domain by Kucera
in e.g. [40], [44]. The frequency domain variant discussed below has been used, for

4See subsection 5.3.8.

SWith a stable C' and no measurement noise (p = 0, M = N = 1), we have f§ = C,r = 1.
Then B, = C, is a factor of two terms in (5.3.10), so it must also be a factor of ¢DL,. Set
L, = CyLy, in (5.3.10), cancel Ci and multiply by ¢, to obtain C = ¢™Q1 + D(¢™*! L1.).

Now, with m = —d, G(¢~1) = Q1(¢™') and F(¢~) = L1(¢7}) E ¢~ %1 L1.(g), we obtain (5.1.3).
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example, by Roberts and Newmann in [54] and by Grimble in [28]. In the example
of subsection 5.3.2, the criterion (5.2.6) can be expressed by

J = Blst)=Ry(t+m)?

2

2
_ El(l—qu)—qe(t) +E|qm7€%v(t)

D
e - . .CC, MM, dz

- jl{zlzl <(1 = R)(1 ~ MR i+ PRR ) —

e cc, . _CC, CC, _. rBB. \ dz

= 2ny fm:l (DD* R oD, DD.” R*+RR*DD*NN*) P

In the third equality, we used Parseval’s formula and in the last, the spectral
factorisation (5.3.7) was inserted. Completing the square gives

A B 2z "™CC.N, B 2"C,CN\ dz
Jo= 27rj]|{z|=1r(DNR_ rB.D )(D*N*R* rBD, )7

Ae CC. CC.CC.NN,\ dz a
fizm (DD* ~ rBB.DD, ) > St o (5.3.12)

2mj

The first term in (5.3.12), Ji, depends on R while the second term, J;, does not.
If R were not restricted to be realisable (internally stable and causal), the problem
could have been solved by choosing R such that J; = 0. (This would constitute
the so—called non-realisable Wiener filter.)

A realisable R can only eliminate the causal parts of the integrand of J;. Since
(B/DN)R is causal, it remains to partition (2 ™CC.Ny)/(rf«D). Let

z27mCCON, Q1 zL.

D "D + ) (5.3.13)

for some polynomials @y and L. The term @;(27')/D(27") represents the causal
part and (zL.(2)/(rf.(2)) the (strictly) noncausal part. By setting the right hand
side of (5.3.13) on common denominator form, we obtain

27 "CCN, = rB.Q1 + 2D L, (5.3.14)

which is (5.3.10), with z exchanged for ¢. Using (5.3.13) to express J; gives
Ae L. L.\ d
= ]4 (P @2l B o, G 2l dz
2rj Jls)=2 \ DN D By DN D B ), 2
By expanding the integrand, J; may be written as a sum of four terms:
A p Q1 Bs Q1. \ dz
io= o5 ?;%:f (DNR_ D) (D*N*R* ~D.) =
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o A
K yle:l( % )

_27rj DN D B =z
_ Ae L. [ P Q1. )\ dz
Vo = _27rj j{z]:lzﬁ* (D*N*R*— D*) z
_ Ae ?{ LL, dz
2w S=1 BB 2

For any causal and stable choice of the rational filter R, all poles of the integrand
of V3 will be located outside the unit circle, since 8, D and N are all stable. Hence,
Vs = 0. (Note that it is crucial that 2L,/ is strictly noncausal, starting with
a free z. This z cancels the pole at the origin of V3.) For symmetry reasons,
Vo = 0. The term Vj does not depend on R. Thus, the criterion J; is minimised
by minimising V3. We readily obtain V; =0 by choosing

B r_ @y
DN D '
This gives
p

where ()1, together with L,, is the solution to (5.3.14) and £ is the stable poly-
nomial spectral factor obtained from (5.3.7). The minimal criterion value is
Jmin = Jo + V4. This derivation should be compared to steps 2. and 3. in
the derivation in subsection 5.3.3.

5.3.5 The classical Wiener solution

Wiener filters are traditionally designed by first whitening the measurements and
then multiplying them by the cross spectral density, ¢, between desired signal
and whitened mesurement. See, for example, [12], [14]. For the example of subsec-
tion 5.3.2, with f(¢) = s(t), the causal Wiener filter is §(¢t[t +m) = {¢sc}r€(t +m),
where €(t +m) = V(¢71)y(t + m) is the whitened measurement. Thus,

R = {pecsV = {$u VsV . (5.3.15)

Above, ¢, is the cross—spectral density of desired signal and measurement. The
notation {:} represents the use of only the causal part of the expression {-}. The
whitening filter is denoted V(¢™') and its conjugate Vi(¢). Apart from a scale
factor 1/4/), it is the inverse of the innovations model (5.3.6):

DN
Vo= e (5.3.16)

The expression (5.3.15) is elegant. However, ¢, is not explicit, in terms of poly-
nomial coefficients of rational transfer functions of the signal and noise models.
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The polynomial systems framework is of help here. It can be used to evaluate the
term {-}4 in an efficient way.

Since e(t) and the noise v(t) are mutually uncorrelated and the measurement is

y(t + m) = s(t + m) + (M/N)v(t + m), we readily obtain
C _.Cu

Z——m

¢sy = ¢s(t)y(t+m) = ¢s(t)s(t+m) = ‘D“ D, Ae

Thus, (5.3.15) becomes, with r £ Ac/X,

e D*N*} DN {_mCC*N*} PN (53.17)
+

ay G mCx | _
R(q )_{Dq D*)\e\/)\_eﬂ* +\//\_e,3_ D?’,H* ,3

Extraction of the causal part {-}; of the double-sided function, corresponds to
performing a partial fraction expansion. Let

~mC@™)C(@)Ng) _ Qulg™)
D(g)rp(e)  D(g™)

L.(q)
rBi(q)

+ (5.3.18)

for some polynomials Q;(¢™!) and L.(q). Terms without delay should appear
exclusively in the causal part, so the noncausal part starts with a free ¢g—term.
Thus, let L.(q) 2 qL.(¢). (This avoids the occurrence of an error pointed out by
Chen [16].) Multiplying both sides of (5.3.18) by Drf, then gives

g "OCN, =rB.Q1+qDL, .

Once again, this is precisely the linear Diophantine equation (5.3.10). Thus, the
causal Wiener filter is

. [@ ¢l DN _@QiDN
R(q )—{D+rﬁ*}+ 5 =" Dp (5.3.19)

which, of course, coincides with (5.3.11), if the stable factor D is cancelled. (Unsta-
ble systems are not allowed in the classical Wiener formulation.) The link between
partial fraction expansion and Diophantine equations was noted by Grimble [28],
and has also been independently noted by us and by others. This link also plays
a key role in the “completing the squares”-reasoning, cf (5.3.13).

5.3.6 The inner—outer factorisation approach

Vidyasagar [63] has discussed a factorisation approach to optimal filtering. This
subsection is based on that approach. To explain it, we need a brief recapitulation
of inner and outer matrices and their properties. Consider rational matrices with
n rows and m columns, having stable discrete—time transfer functions as elements.
Let such matrices be denoted P™™(271), or just P, and their conjugate transpose

1" (2) (or Py). We need the following definitions (see [27] and [63]).
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e A stable rational matrix P™™(z71), n > m, is inner if P,P = I, for almost
all |z| = 1. Tt is co—inner if n < m and PP, = I, for almost all |z| = 1.

e A stable rational matrix P™™(z1), n < m, is outer if and only if it has full
row rank n, V |z] > 1. In other words, it has no zeros in [z| > 1. It is
co—outer when n > m if and only if it has full column rank m, V |z| > 1.

e A stable rational matrix P™™(z~1), with full rank p & min{m,n} for all
z = e’ (no zeros on the unit circle), has an inner-outer factorisation

prim = priepeim (5.3.20)

with the outer factor P, having a stable right inverse. It also has a co—inner—
outer factorisation

prim — prlpprim (5.3.21)

with the co—outer factor P,, having a stable left inverse. If n < m, the
co—outer matrix is square, and its inverse is unique.

Inner and co-inner matrices are generalisations of scalar all-pass links. Multipli-
cation by a (co)inner matrix does not affect the spectral density or power of a
signal vector. The important property of outer and co—outer matrices is that they
are stably invertible. Additionally, the inverses are causal if the instantaneous gain
matrices P,(0) and P.,(0) have full rank p.

Now, minimising (5.2.6) is, for the filtering example of subsection 5.3.2, equivalent
to minimising

H[ AL/2 0] -R [zm%A;/Z zm%/\},ﬁ] Z (5.3.22)
where || 2(27") [13= (1/275)tr §,12; v2.dz /2.
The idea is now to factor the second term of (5.3.22) as

e [ gA§/2 zm%)\}/?] = U, Uy (5.3.23)

where U, is co-outer of dimension 1|1 and U, is co-inner of dimension 1|2. The
scalar co-outer will have a stable inverse, if the left hand side of (5.3.23) has full
rank 1 for all |z] = 1. ® The inverse U ( 1) is causal if and only if U, (0) # 0.

By invoking (5.3.23), the criterion (5.3.22) can be written as
2

”[ /2 g ] RU,oUss (5.3.24)
2

Now, multiplying the interior of the norm in (5.3.24) from the right by U.ix, which
is normpreserving, and using the co—inner property, U,U.x = 1 on |2] = 1, gives

2

H[ )‘1/2 0] ci* _RUco

SIn other words, C' and A im should have no common factors with zeros on |z| = 1. This
corresponds to the condition for existence of a stable spectral factor in (5.3.7).
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By decomposing into causal and noncausal parts, the causal and stable filter R,
which minimises J, is readily found from the requirement that R should eliminate
the whole causal part. Thus,

RU,, = {[QA% o} Uc,-*} (5.3.25)
D +

where {-}, as before, represents the causal part. The optimal filter thus becomes

R:{[—C—A;/Z 0} Uci*} Uzt . (5.3.26)
D +

The inverse U is stable by definition.

The factorisation—based solution thus consists of first performing a co—inner—
outer factorisation (5.3.23) and then the causal-noncausal factorisation required
in (5.3.25). We will now emphasise the correspondence of these two steps to the
previous solutions.

If the spectral factorisation (5.3.7) has been solved, the co-inner and co—outer

factors can be obtained as

U - AL2p _[M/mON o N/2mMD
co "D"—N“ ct — %/zﬂ )\}/Qﬂ

(5.3.27)

It is easily verified that U = U,U, and that, with r = A /Ae, p = A/, cf.
(5.3.7), we obtain

Uilos, — /\eCN(C’N);\ n; gvMD(MD)* 1 (5.3.28)

Furthermore, Uy, given by (5.3.27) has no zero in |z| > 1, and is therefore stably
invertible, whenever a stable spectral factor B exists. The construction above is
an application of the standard way of performing inner-outer factorisations: by
means of spectral factorisation, see e.g. [27].

Using (5.3.27), the optimal filter (5.3.26) can be expressed as

o Aez”™CCN, | DN
R = {[Ay?— 0] Um-*} Uzt ={ : * } 5.3.29

where the scalar A71/? from UZ! has been absorbed into the {-},~factor.

The causal bracket operation is the same as in the classical Wiener-solution. Thus,
exchange ¢ for z and introduce polynomials @1(¢™') and L.(g), such that the
impulse response of the rational function inside the brackets of (5.3.29) can be
expressed as the sum of a causal and a noncausal term

Aeq”"C(q")Cu(@)Nulg) _ @ul¢™!)
AeD(q71)Bu(9) D(g™")
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Thus, the { + }factor equals );/D. By setting the expression (5.3.30) on a
common denominator, we obtain the Diophantine equation (5.3.10). The estimator
(5.3.29) equals (5.3.11):
QDN _ QW
D p B

Observe that the inverse of the co-outer, U, is nothing but the well-known
whitening filter V in (5.3.16), from the classical Wiener solution. As in that case,
unstable D—polynomials are not allowed.

R (5.3.31)

5.3.7 A comparative discussion

Above, we have presented four different routes to the MSE-optimal solution.
Which route to be preferred is more or less a matter of taste and background.
There are, however, some aspects a problem solver should be aware of. We shall
briefly summarise them below.

Evidently, the four approaches arrive, one way or another, at a polynomial spec-
tral factorisation and a Diophantine equation. In the variational approach, spectral
factorisation arises as an obvious simplification of the cross spectral density ¢.,«.
See (5.3.9). The same is true for the “completing the squares”-approach, but there
it simplifies the criterion expression. In the classical Wiener solution, the spectral
factorisation determines the whitening filter while in the inner—outer factorisation
approach, it is part of the inner outer—factorisation. In particular, it is defined by
the inner property (5.3.28). The inverse of the outer matrix is the whitening filter
in the classical solution, while the bracket term in (5.3.29) is just another way of
writing {¢sy Vi ts, cf. (5.3.15).

Spectral factorisation can be avoided in noise—free situations, with stably invertible
models, such as the prediction problem (5.1.1)-(5.1.3). In problems with noise,
it can be avoided only in very special cases, such as the optimisation of decision
feedback equalisers. That problem is discussed in Section 5.6.

It is interesting to note how the Diophantine equation arises. In all formulations
except in the variational approach, it originates from a causal-noncausal partition-
ing, where the causal factor {-}; is sought. In the variational approach, it arises
from the requirement that the variational term should be orthogonal to the error.

Problems with unstable models can be handled by the variational approach (see
subsection 5.3.9 below) and by the completing the squares—method. They cannot
be handled by the classical Wiener approach or by inner—outer factorisation.

A disadvantage with the “completing the squares” approach is that it will , in
difficult problems, be hard to complete the square: the solution has to be known
(or suspected) in order to find it. On the other hand it requires, in essense, the
simplest mathematics: just quadratic forms are needed. (This is more apparent in
a time domain formulation.) In the classical solution, it might be difficult to find
the right way from the expression (5.3.15) to an explicit solution. In particular,
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this is not straightforward for the problem discussed in Section 5.6. The same is
true for the inner—outer factorisation approach.

A main advantage with the variational approach is that it leads to the solution
along a constructive and systematic route. This is of considerable importance in
more difficult problem formulations. See e.g. Section 5.4.

Another advantage is that the free g-factor in e.g. (5.3.10) emerges automatically
from the cancellation of the free z in (5.3.9). In the other methods, one has to,
somewhat arbitrarily, include direct terms only in the causal part of the causal-
noncausal partitioning, to avoid a suboptimal solution [16]. A disadvantage with
the variational approach is that some extra calculations are required to obtain the
criterion value. In the “completing the squares” approach, this comes as a bonus.

5.3.8 The scalar Diophantine equation

While Diophantine equations in general have an infinite number of solutions, equa-
tions arising from linear quadratic design problems mostly have a unique solution.
This is a consequence of two requirements, which are easily seen for the scalar
Diophantine equations obtained in this chapter, see e.g. (5.3.10):

1. Filter causality requires @; to be a polynomial only in ¢~1.
2. Optimality restricts L, to be a polynomial only in g.

For equations with these properties, the following result can be established.

Theorem 5.3.1

Consider the scalar Diophantine equation

Clg,¢7") = A(g,¢7)X(¢™") + Bla, a7 )Y (q) (5.3.32)
where
Clg,g™) & cad™ +...+cot ..+ cnag™™?
A(q,q_l) é analqnal +...4+as+...+ a_nazq-—naZ ?é 0
B(a,¢™Y) 2 bung™ 4. A bot ...+ buag ™ #£0 .

Let d be the the number of linearly dependent equations in the corresponding
system of linear equations. Then, (5.3.32) has a unique solution

X(q™") = wotag 2™ 5 V(@) = Yot gt + Y™
with degrees 7

nz = max{nc2,nb2} —na2 ; ny = max{ncl,nal} —nbl (5.3.33)

"The degrees (5.3.33) are obtained from the requirement that the variables X(¢~!) and Y (q)
should cover the maximal powers of ¢~! and g, respectively, in the other terms of (5.3.32).
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if and only if common factors of A and B are also factors of C and

nbl + na2—d=1 . (5.3.34)

Proof: See [4].

The equation (5.3.10) fulfills (5.3.34). There we have nbl = 1 (because of the free
g—factor) and na2 = 0. Since S, (unstable) and D (stable) cannot have common
factors, the corresponding system of equations has full rank. Consequently, d = 0
in (5.3.34). From (5.3.33), we obtain the degrees n@; = max(nc+m,nd—1), nL =
max(nc+ nn —m,nf) — 1.

5.3.9 Unstable signal models

Let us remove the assumption of stability of D and N in the problem described
in subsection 5.3.2. The complete solution then turns out to include a second
Diophantine equation. However, we will argue that the original equation is suffi-
cient in filtering problems of practical interest. Assumption A is now exchanged for

Assumption B. The signal and noise models s(t) = (C/D)e(t) and w(t) =
(M/N)v(t) are causal and have no unstable hidden modes. They have no common
zeros on the unit circle and no common poles on or outside the unit circle.

The requirement of no common unstable modes corresponds to detectability of a
state space model.

For unstable systems, an innovations model (5.3.6) can still be defined. It should,
more properly, be called a generalised innovations model, with B(¢g™') being a
generalised (polynomial) spectral factor [56]. Under Assumption B, the spectral
factorisation equation (5.3.7) will have a unique stable solution.

In the variational approach, the stationarity of the variation v(¢) = Ty(t +m) has
to be guaranteed. (The modified estimation error is e(t) + »(¢). Assuming &(2)
to be zero mean stationary, we could never obtain a lower MSE by adding to it a
nonstationary signal v(t), with variance tending to infinity.) Stationarity of v(t)
is guaranteed by requiring 7 to contain all unstable poles as zeros. For example,
set T = DNT; with 77 stable and causal. Then, the factor (1/D.N,)7 in (5.3.9)
has poles only outside |z| = 1. The rest of the reasoning remains unchanged. The
optimal linear estimator still satisfies (5.3.10) and (5.3.11).

For unstable signal (and noise) models, two different situations are now possible.

Case 1: f, and D have no common factors. Under Assumption B, the equation
(5.3.10) remains uniquely solvable. Since f, has zeros only in |z| > 1, this holds
for marginally stable models, where D (or N) has zeros on |z| = 1. These are the
unstable models of most interest in filtering problems. They are used for describ-
ing signals and noise with drifting or sinusoid behaviour. The use of signal models

18




with poles at z = 1 is also a trick to avoid bias when estimating stationary signals
with nonzero mean.

Stationarity of the error £(¢) in subsection 5.3.3 is verified in the following way.
(See also Appendix A and B to Chapter 3 of this volume [59].) The use of (5.3.11)
n (5.3.8) gives

o) = (1= L) Fett) - BTt

Cancellation of N in the last term is assumed to be exact. (If D is stable and N

unstable, £(¢) is therefore stationary.) Let us evaluate the first term at the zeros
of D in |z| > 1, denoted {z;}. When (5.3.7) and (5.3.10) are evaluated at {z;},
their most right-hand terms (but no other terms) vanish. Use of this fact gives

Al
p

I
o

. CC*N*) N
s

=1—¢q™
— ! (q B,

Thus, the transfer function from e(t) to the error €(t) remains finite for all z > 1,
including {z;}. Unstable poles are cancelled by zeros. In SISO problems, the rea-
soning above is straightforward. In multi-signal estimation problems, additional
conditions will often have to be imposed, to avoid “impossible” problem formula-
tions, for which no finite minimal criterion value exists.

Note that for signals with nonzero mean, the presence of a zero at z = 1 in the
transfer function from s(t) to €(t) precludes biased estimates. The presence of
such a zero is assured by including a pole at z = 1 in the signal model C/D.

Case 2: 3, and D have common factors. Under assumption B, those factors
must also be factors of the left-hand side of (5.3.10) 8. Thus, the Diophantine
equation remains solvable, but the solution becomes non-unique. We obtain a
linear dependence in the equations, represented by d > 0 in (5.3.34). Only one of
these solutions corresponds to a stationary error ®. The correct solution is obtained
by requiring that D is cancelled in the transfer function from e(t) to e(t). Thus,
we require that

B—q"QN =XD (5.3.35)

for some polynomial X (¢~!). This is the second Diophantine equation. An alter-
native variant is obtained by multiplying this equation by rf.. This gives

rBPs = ¢"(rfrQ1)N + rBXD
The use of (5.3.7) and (5.3.10), and cancellation of D, gives the equation

pMM,D, = —q"P'L,N + 1. X . (5.3.36)

8From the spectral factorisation (5.3.7), it is evident that factors common to D and r(3, must
also appear in CCyNN,. Since (D, N) and (D, C) are not allowed to have unstable common
factors, these factors must be present in C,N,.

9The demonstration of a finite transfer function utilised in Case 1 cannot be used for the zeros
of common factors of fx and D. Both (5.3.7) and (5.3.10) vanish completely at those zeros.
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Any one of the equations (5.3.35) or (5.3.36) can be solved in conjunction with
(5.3.10), in the same way as in the feedback design of Example 1 in Chapter 3.
Then, the unique optimal @Q1(¢~!) is obtained, together with L.(¢) and X(q™1).

The need for a second Diophantine equation in certain situations has been empha-
sised by Kuc&era [42] for feedback control problems and by Grimble [30] and Chisci
and Mosca [17] for filtering problems.

The additional equation complicates the solution, but it is required only in the
exceptional Case 2. In the open loop filtering problems considered here, that
situation is furthermore of little practical interest. It corresponds to estimation
of exponentially increasing, “exploding”, time series.'® There would be severe
problems with variable overflow, except for short data series. Furthermore, the
stationarity of the error depends on exact cancellation. Arbitrarily small mod-
elling errors or roundoff errors would ruin the result completely in the long run.
When signals are nonstationary, the problem of model errors is furthermore larger
than for stationary signals. In a nonlinear world, linear time—invariant models are
good (but not perfect) descriptions of time series only around stationary operating
points. The sensitivity problem is still serious, but more acceptable, in the impor-
tant case of poles on |z]| = 1.

For these reasons, estimation problems for strictly unstable models, with a theo-
retical need for an additional Diophantine equation, will not be considered in the
following.

5.4 Multisignal deconvolution

Let us now consider the problem of deconvolution or input estimation, as presented
in [4]. The formulation includes all problems described by the general structure of
Figure 5.1. The solution illustrates the application of the variational approach to
multi-signal filtering problems.

In many areas, it is of interest to estimate the input to a linear system. One
interesting application is the reconstruction of stereophonic sound, described by
Nelson et.al. [51]. Others are described in [2], [21], [22], [46], and the references

therein.

Let the noise—corrupted measurement y(t) and the input u(t) be described by

y(t) = A7 Bu(t)+ N7'Mv()
(5.4.1)
ut) = D7Ce(t) .

10This claim does not hold for estimation within a stabilised closed loop. One example is a
state estimator used in conjunction with a state feedback, which stabilises the unstable mode.
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Here, (A, B, N, M, D,C) are polynomial matrices of dimensions p|p, pl|s, p|p, pIr,
sls and s|k, respectively. As before, {e(t)} and {v(¢)} are mutually uncorrelated
zero mean stochastic processes. They have covariance matrices ¢ > 0 and 3 > 0, of
dimensions k|k and r|r, respectively. The matrix B need not be stably invertible.
It may not even be square. Irom data y(t) up to time ¢ + m, an estimator

F(tlt+m) = R(¢)y(t +m) (5.4.2)
of a filtered version f(t) of the input u(t)
f(t) = T71Su(t)

is sought. The quadratic estimation error (5.2.6) is to be minimised with dynamic
weighting W = U~V This corresponds to the choice G = A™'B, G, =0 (= R, =
0), F=D'C,H=N1M,D=T"'5W=U""V,and R, = [R 0] in (5.2.4)~
(5.2.7). See Figure 5.5. The filter 7715, with T and S of dimensions £}£ and
£|s, may represent additional dynamics in the problem description (cf [19],[20]), a
frequency shaping weighting filter (cf [2]), or a selection of certain states.

When {u(t)} represents a sequence of transmitted symbols in a communication
network, (5.4.2) represents a linear equaliser. Its output is then fed into a decision
device in order to recover the the transmitted symbols. See e.g. [26], [57].

4 ™
v(t)
Noise
-1
Signal System N~M Model Deconvolution
Model y w(t) Filter )
ﬂﬂ.D—lc U t) A—IB s(t . yit quP R f(t]t—i—m)

oS i
+

b0
_ — J

Figure 5.5: A generalised multi-signal deconvolution problem. The vector se-
quence {f(t)} is to be estimated from the measurements {y(t)}, up to time ¢ +m.

Introduce the following assumptions.
Assumption 1: The polynomial matrices A(¢g™*), N(¢7%), D(¢™*), T(¢71), U(¢™")
and V(¢™!) all have stable determinants and non-singular leading coefficient ma-

trices. (Thus, they have stable and causal inverses.)

Assumption 2: The spectral density of y(¢), ®,(e’*), is nonsingular for all w.
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The spectral density matrix, ®,, will be expressed using a polynomial matrix spec-
tral factorisation. (It is preferable to avoid the numerically difficult task of per-
forming spectral factorisation of rational matrices, and instead use factorisation
of polynomial matrices. For this, there exist efficient numerical algorithms [35],
[43].) In order to achieve this, two coprime factorisations have to be introduced:

~

D'B = BD™
(5.4.3)
N'A = DAN7! .

Here, the polynomial matrices ), N and A have dimension plp, while B has
dimension pLs. The factorisations constitute the calculation of irreducible left
MFD’s (D, B and N, A are left coprime) from right MFD’s. Thus, no unstable
common factors are introduced. Since D and N are stable, D and N will be stable.
Using (5.4.3), inverse matrices in the expression for @, can be factored out to the
left and right, leaving a polynomial matrix in the middle. We obtain

3, = A'BD'C4C.D'BAT+ N 'MPM,N' = o BBt (5.4.4)

where - o N N
BB« = NBCHC BN, + AMYM,A, (5.4.5)
and o
a2 NDA .

Under Assumption 2, a stable p|p spectral factor 8, with det 8(2™') # 0in |2| > 1
and nonsingular leading matrix By, can always be found.

Now, the optimal estimator can be derived as outlined in subsection 5.3.1. Let
e(t) = UTV(f(t) — f(t|t + m)) be the filtered error and v(t) = T (¢~ Hy(t + m)
the variation. Since e(t) and v(t) are assumed uncorrelated, we obtain
Ee(t)v*(t) = EUT'V|(T7'S — ¢"RATB)D ' Ce(t) — ¢"RN " Mv(t)]
[T¢™(A™'BD™'Ce(t) + N"'Mo(t))}*

= i UV {z™T'SD'C¢C.D;' B, A
2rg Jizl=1
—R[AT'BD1C4C. D' B, A" + N“lMz/)M*J\f;l]}T*5'-12-:i : (5.4.6)

The use of (5.4.3) and (5.4.4) in (5.4.6) gives, with o' = N71D1ALY,

Ee(t)v*(t) = % 3 U Y z""VT'SD'C¢C.B.N, — VRa_l,Bﬂ*}a;l'Z;d?Z
T z|=1
(5.4.7)

22




Since A, D and N are stable, all elements of a=! = A=*D~1N-! have poles only
in |z] < 1. Elements of 8 may contribute poles at the origin, since they are
polynomials in 271, These factors to the right of R can be cancelled directly by
R. Moreover, introduce the additional coprime left MFD

T8 =vT1sD™! (5.4.8)

with a stable 7' of dimension £}¢ and S of dimension £|s. Apply it in the first term
of the integrand of (5.4.7). If R contains V~1T~! as a left factor, 7! can then be
factored out to the left. Thus,

R =V IT1Q6 e (5.4.9)

where @1(271), of dimension {|p, is undetermined. With (5.4.9) inserted, (5.4.7)
becomes

Ee(t)v*(t) dz

z

1 o ~ o~ o~
= U—lT_l{Z_mSCQSC*B*N* — Qlﬁ*}a;l’];
2wy Jlzl=1
All poles, of every element, of o717, are located outside |z| = 1, since « is stable
and 7 is causal and stable. In order to fulfill (5.3.4) collectively, we require

2 ™SC$C. BN, = Q1. + 2TUL, . (5.4.10)

This is a linear polynomial matrix equation, a bilateral Diophantine equation.!!

Here, Q1(27!) and L.(#) are polynomial matrices, of dimension £|p, with degrees

n@Q; < max(nc+n§+m,ni+nu—1) ; nL < max(nc-l—n?)—i-nﬁ—m,nﬂ) -1 .
) ) (5.4.11)

With 8 and T'U stable, det 8, and det T'U will have no common factors. Thus, a

unique solution to (5.4.10) exists. See [4] or the reasoning in Section 3.3 [59].

The design equations thus consist of the coprime factorisations (5.4.3), (5.4.8), the
left spectral factorisation (5.4.5), the Diophantine equation (5.4.10) and the filter
expression (5.4.9). The derivation above constitutes a slight generalisation of the
derivation in [4], to the case of frequency dependent weighting W = U™V # I.
For scalar systems, the solution reduces to the one presented in [2], [20]. An alter-
native derivation, based on the inner-outer approach, can be found in [5], which
is a comment on [15].

The minimal criterion value is obtained by inserting (5.4.9), (5.4.4), (5.4.8), and
(5.4.10), in this order, into the criterion J in (5.2.6). When W = I,, we obtain,

with H £ NBC,
1 —1 -1 —-1opn-1 -1p-1 -1 _1, 4%
57 j{ t{L.B7p7 L+ TISDC(4 - $HLAT BT H)C.DT ST
(5.4.12)

11A general rule is that the stable inverses which can not be cancelled by R directly, must
be factored out to the left. When cancelled later, this will define a Diophantine equation, such
as (5.4.10). (Note that if SC had been factored out as well, (5.4.10) could not have become a
polynomial matrix Diophantine equation.)
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The minimal criterion value consists of two terms. The first term involves the
sometimes so called “dummy”—polynomial L.. In deconvolution problems, it can
be given a nice interpretation: it represents the unavoidable error caused by in-
complete inversion of the system A1 B. Only the use of an infinite smoothing lag
can make the first term vanish, unless the system is minimum phase and there is
no noise. One can show that L — 0 when m — oo {19].

The rule in the derivation technique is to cancel what can be cancelled directly, by
means of R. The rest of the terms contributing poles in |z| < 1 must be factored
out to the left, to be taken care of by L, and @);. It is instructive to note how
the Diophantine equation interacts with the cross—term (5.4.7). It has to absorb
contributing parts of the integrand which cannot be cancelled directly by R. L.
represents the remainder. There exists a very special case in which perfect input
estimation is possible. It is the case of minimum—phase systems without noise,
with ¢"™ B square and stably and causally invertible. Consider this situation and
let S =T = I,. Then, R = D'B~1DAq~™ makes the integrand of (5.4.7) zero
directly. Consequently, there is nothing left for L, to take care of, so L, must be
zero. By utilising (5.4.3) we obtain R = ¢~™ B~ A, that is, the inverse system.

For scalar systems, the deconvolution problem has also been studied in an adap-
tive setting, see [3]. Multivariable adaptive deconvolution, for the special case of
white input and noise, has been discussed in [22] and [47]. Crucial for an adaptive
algorithm to work, is that the model polynomials can be estimated from the out-
put only. In [1}, the identifiability properties of the scalar deconvolution problem
are investigated and conditions for parameter identifiability are given. If similar
conditions exist for the multivariable problem, is still an open question.

The considered deconvolution problem turns out to be dual to the feedforward
control problem (with rational weights) discussed in Chapter 3, Section 3.3, of
this volume [59]. See [10]. It is very simple to demonstrate this duality. Reverse
all arrows, interchange summation points and node points and transpose all ra-
tional matrices. Then, the block diagram for the other problem is obtained. The
transposition explains why the system is described by left MFD’s in the filtering
problems, while right MFD’s are used in the control problem.

Note that the problem set—up contains the general filtering problem described by
(5.2.1), (5.2.2) as the special case v(t) = 0. See Figure 5.1. The solution derived
here thus solves all problems discussed in this chapter. (By duality, it also solves
all H, feedforward control problems.) However, it does not provide the same de-
gree of expliciteness as do the solutions in Section 5.3 and Sections 5.5-5.6. One
can simply not “see through” all the generality.'? One of our convictions is that
structure gives insight. Therefore, we have, in each specific problem, abandoned
generality for structure, in order to gain insight, and also to simplify the solution.

12For example, the solution to the decision feedback equalisation problem does not involve any
(polynomial) spectral factorization. To see this from the general solution would be very hard.
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5.5 Differentiation and state estimation

The problem of estimating derivatives from measured data can be treated as an
application of state estimation. It is an important engineering problem, which has
been extensively studied over the years, see for example, [7], [18], [25], [53], [62],
and the references therein. In radar applications, velocity estimation from position
data is of interest [24]. Other applications are, for example, estimation of heat-
ing rates from temperature data or net flow rates in tanks from level data. The
estimation of derivatives is challenging because of its sensitivity to measurement
noise. We will here describe a design method developed by our collegue Bengt
Carlsson. For more details, see [18] and [19].

Since the derivative is a continuous—time concept, it is appropriate to base the
discrete—timefilter design on a continuous—time problem formulation. Let a continu-
ous-time scalar signal s.(t;) be characterised as a linear stochastic process

s(te) = G(p)e.(t.) (5.5.1)

where e.(t.) is zero mean white noise, with spectral density \./27. The argument ¢,
denotes continuous time, and G(p) is a rational function of the derivative operator
p 2 dfdt,

bops_n_l + blp’s_n_-2 + .o+ b&—-n—-l

G(p) = 5 51
P’ Hap+...+as

The transfer function has order § > n + 1 and pole excess (relative degree) >
n + 1. Here, we think of the expression (5.5.1) as a model describing the spectral
properties of the signal. We assume A, and G(p) to be time-invariant. The signal
s(t.) is sampled with sampling period h. The objective is to seek the n’th order
derivative of the signal s(t.)

é dnS(tc) _
= —dtg =

(5.5.2)

f(te) p"G(p)e.(tc)

bopa_—l -+ b1p6_2 +...+ bg_n_lpn
= p6 + alps—l +.. . +as 6c(tc) (5.5.3)

at the time instants ¢, = th; t = 0,1,....

Let us outline a solution, which is derived and discussed in more detail in [19]. The
stochastic model (5.5.1)-(5.5.3) can be represented in state space form, denoting
the state vector u(t), as

du(t.) = Au(t.)dt + BdW(t.)
s(te) = Hiu(t,) (5.5.4)
f(tc) = H2u(tc) .
Here, dW (t.) = e.(t.)dt represents Wiener increments and Hy, H, are vectors. The

internal structure of the matrices in (5.5.4) depends on how (5.5.2) and (5.5.3) is
represented. See [19].
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Stochastic sampling (see e.g. [8]) of (5.5.4), results in the discrete-time represen-
tation

u(t+1) = Fu(t)+ eyt)

s(t) = Hu(?) (5.5.5)
é dns(tc) _ S
f) & T = H)

where F' = e4*. Note that f(t) is exactly the derivative at the sampling instants
th. We assume the system to have poles in |z| < 1 and the pair (F, Hy) to be
detectable. (Possible unobservable modes must be stable.) The column vector
ey(t) consists of discrete-time stationary white noise elements with zero mean.
Their covariance matrix equals

h
Eeo()es(t)T 2 AR, = A, / A BBTA T gr (5.5.6)
0

Note that while the continuous-time noise process e,(t.) is scalar, e,(t) will be a
vector of dimension s = dim A. In general, R, has full rank. The effect of all
components of e,(t) on f(¢t) = Hau(t) can not, in general, be calculated exactly
from their effect on s(¢t) = Hju(t), unless the covariance matrix R, has rank 1.
(When the sampling frequency increases, R, approaches a rank 1-matrix.)

Measurements of the signal s(t) are assumed to be corrupted by a discrete-time
noise w(t), described below by a discrete-time ARMA model

y(t) = s(t) + w(t) . (5.5.7)

In order to fit this problem into the parametrisation (5.2.4), we will convert the
state space model (5.5.5) into a transfer-function based model. For this reason,
introduce the characteristic polynomial D(¢™!), of degree nd equal to the number
of states s, and the polynomial matrix C(¢™') as

D(g™") & det(I —¢'F) 5 C(¢™") S adi(I—¢'F)g™" . (5.5.8)

Note that C has dimension s|s. Also, note that we use a bold face C here, to
distinguish between a polynomial matrix, a polynomial, such as e.g. D(¢™'), and
constant matrices like H; and R.. Hence, the sampled system can be expressed as

u(t) = ggg:gev(t) Ee,(t)e,(t)T = A\Re
w(t) = %((g:i))v(t) | Eo(t)? =), .

(5.5.9)
y(t) = Hu(t)+w(t) ;5 f(E)= Hu(t)

Assume the parameters of the continuous-time model (5.5.1)-(5.5.3), and those
of the noise description, to be known a priori or correctly estimated in some way.
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The discrete-time model (5.5.10) is then obtained by stochastic sampling. We seek
the stable time-invariant linear estimator of the n’th derivative

: Q(¢7h)

tt+m)=—=—"—=y(t+m 5.5.10
o+ m) = Ty o4 (5.5.10)
which minimises the mean square estimation error e(t) = f(t) — f(¢|t + m). This
corresponds to the choices G = Hy, G, =0 (= R, =0), F = (1/D)C, H= M/N,
D=H;, W=1and R, = [Q°/R° 0] in (5.2.4)—(5.2.7). See Figure 5.6.

a )

Mg~ )| Noise ] o
Sampled Signal N(q—I) Model Differentiating
Description Filter
w(t) —_
ey(t) Cc(g™h m Qg O f(tt + m)
D(¢71) ? Re(gY)

o

_/

N

Figure 5.6: A state estimation problem, which here represents a differentiation
problem based on a continuous time model. The state f(¢) is the derivative of
s(t). It is to be estimated from measurements y(¢t + m).

Introduce the following polynomials, obtained from the model (5.5.10)
Pi=plig4...p+. .. p%.q ™ 2 HC(gY)R.Cu(g)HF , 4,5 =1,2 (5.5.11)

Also, with g 2, /A¢, introduce the polynomial spectral factorisation

defining the stable and monic spectral factor f(¢™!) = 14 B1g™* + ...+ Bupg™ ™
of degree nf3 = max{nc + nn,nd + nm} and a scalar 7. As mentioned before, a
stable spectral factor 3 exists, if and only if the two terms on the right hand side
of (5.5.12) have no common factors with zeros on the unit circle. (If n = 0, the
first term should have no zeros on the unit circle.)

The polynomials P;; and § have specific interpretations. Note, from (5.5.10) and
(5.5.11), that for stationary signals (stable D and N), the spectral densities of

{s(t)} and {f(t)} are given by
_/\c Pll __/\c P22 _)\c P21
P =orpp, Y@ =%op, MW= 5 bh;

(5.5.13)
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where e™™T and €T have been substituted for ¢~ and ¢ in all polynomials.
If D and N are stable, the spectral density of the measurement sequence {y(t)} is

given by

) X Py A MM,
¢y(w) - ¢S(UJ) + ¢w(w) - 271' DD* 27T NN*

A 78B.
2r DD.NN, | (5514

As usual, the spectral factor 8 thus represents the numerator of an innovations
model.

Theorem 5.5.1

Consider the sampled signal model described by (5.5.10), with all zeros of D and
N in |z| < 1. Assume that a stable spectral factor 3, defined by (5.5.12), exists.
A stable linear estimator (5.5.10) of the derivative then attains the minimum of
the criterium J in (5.2.6) if and only if it has the same coprime factors as

@ _ @iN

= (5.5.15)

Here Q5(g¢™'), together with a polynomial L(q), is the unique solution to the
linear polynomial equation

¢ " Py Ny = 76.Q1 + ¢DL; (5.5.16)
with polynomial degrees

n@$ = max{nc+m,nd —1}

nL® = max{nc+nn—m,nf}—1 . (5:5.17)
The minimal variance of the estimation error is given by
Be(t), = /\c. % LeL; 771\4"1\4*1322 NN, [Py Py — P12P21]}d_2
27 J|zl=1 7B P 730, TBBD D, z
—— - ~ v . >
I I 11

(5.5.18)
c

Proof: See [19], where the optimality is verified using a non—constructive variant
of the variational approach.

This solution considers estimation of one state variable only: the derivative of or-
der n. It is straightforward to estimate several state variables, or even all of them,
with different smoothing lags for each one. If f(t) is a vector, the estimation of
component ¢ of f(¢) does not affect the estimation of component j. The total
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estimator of f(t) can then be obtained as £ parallel scalar estimators. We thus
obtain a set of independent Diophantine equations of the type (5.5.16), one for
each estimated state variable. The scalar spectral factorisation remains unaltered.

This way of expressing a state estimator can be seen as an alternative way of
computing a stationary Kalman filter/predictor/smoother, for systems with scalar
measurements y(t). For systems with multiple measurements, a matrix spectral
factorisation would be required. It is then doubtful if a polynomial solution offers
any computational advantage.

If the characteristic polynomial D is marginally stable, both f(¢) and the es-
timate f(t) will, in general, be nonstationary sequences. The estimation error
e(t) = f(t) — f (t) will, however, be a stationary zero mean sequence, with a finite
minimal variance given by (5.5.18). (This implies that marginally stable factors
of D, in the denominator of term IITin (5.5.18) are cancelled by numerator factors.)

The three terms in (5.5.18) can be interpreted as follows.

Term I represents the effect of a finite smoothing lag m. As is shown in [19],
L¢ — 0 when m — oo. Term 1 then vanishes.

Term II depends on the noise w(t). It represents the unavoidable performance
degradation due to noise, which cannot be eliminated, even with an arbitrarily
large smoothing lag m. The term vanishes in the noise-free case (n = 0).

Term III remains even when m — oo and 5 = 0. It represents aliasing effects.
Asymptotically, when A — 0 and the covariance matrix A.R. (defined by (5.5.6))
approaches a rank 1-matrix, the term vanishes. See [19].

The differentiation problem can also be posed in a discrete time setting, without
assuming an explicit underlying continuous-time model. The problem becomes a
scalar variant of the general problem of Section 5.4, with u(t) being the signal of
interest and D = T~1S representing a discrete-time approximation of the deriva-
tive operator (iw)™. Based on such an approximation, which can be designed by
well-known means [18], [53], the polynomial approach provides an estimator which
optimally takes noise and transducer dynamics into account. See [19], [20]. The
use of a discrete-time approximation of the derivative operator mostly results in
an additional perfomance loss, compared to the formulation outlined above. (How-
ever, if the continuous time system is known, this loss can be eliminated by using
an optimal derivative approximation. See [19].)
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5.6 Decision feedback equalisation

We finally turn our interest to an important problem in digital communications,
and present a polynomial solution derived in [57]. When digital data are transmit-
ted over a communication channel, intersymbol interference and noise prevent a
receiver from always detecting the symbols correctly. Consider a received sampled
data sequence y(t). It is described as a sum of channel output s(¢) and noise w(t)
by the following linear stochastic discrete time model

— s w(t) = —kMu M(‘Z"l)v
y(t) = s(t) +w(?) q AlgY) (t) + N(q—l) (t) (5.6.1)

The first right-hand term of (5.6.1) represents a dispersive linear communication
channel, with {u(¢)} being the transmitted data sequence. The channel model
includes pulse shaping, receiver filter and a transmission delay of k samples. Base-
band operation on a complex channel is assumed. The second term describes a
coloured noise, where the colour may be caused, for example, by effects of receiver
filters or leakage from other channels. The sequence {v(%)} is a discrete-time white
noise. It is zero mean, stationary and independent of u(t).

The polynomials in (5.6.1), having degrees 8a, 6b etc, are assumed known a priori
or correctly estimated. Except for the B(¢™!)-polynomial, which has an arbitrary
nonzero leading coefficient b,, all polynomials are monic. It is realistic to assume
A(g™1) and M(q™!) to be stable polynomials, while B(¢™!) can have zeros any-
where and N(g™') may have zeros in |z]| < 1.

The sequence {u(t)} is here assumed to be white. It may be real or complex.
One example is the use of p-ary symmetric Pulse Amplitude Modulated (PAM)
signals. Then, u(t) is a real, white, zero mean sequence which attains values
{-p+1,...,—1,+1,...,p— 1} with some probability distribution. In other mod-
ulation schemes, such as Quadrature Amplitude Modulation (QAM), the model
coefficients and signals in (5.6.1) are complex-valued. For the source coding scheme
of interest, define

MA B oL BBl . (5.6.2)

The data sequence u(t) is to be reconstructed from measurements of y(¢). As has
been mentioned in Section 5.4, this can be accomplished by a linear equaliser.
Superior performance is, however, achieved with a Decision Feedback Equaliser
(DFE) for moderate and high signal to noise ratios. A DFE is a nonlinear filter,
which involves a decision circuit. Decisioned data are fed back through a linear
filter to improve the estimate. See e.g. [11], [23], [50], [52], [55], and the references
therein. The bit error rate of a DFE is in many cases several orders of magnitude
lower than for a linear equaliser.

Previously available design principles for the linear filters of a DFE have either
provided optimal filters that are not realisable, or realisable filters with a subop-
timal transversal (FIR) structure. Here, we will introduce a general IIR decision

feedback equaliser (GDFE), see Figure 5.7,
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Figure 5.7: The Decision feedback equalisation problem. The estimate @(t|t + m)
is obtained by subtracting decisioned data @(t), fed back through a filter. The
estimate 4(t[t+m) is fed into a decision device to recover the transmitted sequence.

, S(q™? Q™) .
a(tlt +m) = qu'lg y(t+m)—¢q 1#_1; a(t) (5.6.3)
S —~ S
forward filter feedback filter

Above, m is the number of lags (smoothing lag) and (¢) is decisioned data, for
example sign(?(t)), when PAM is used with p = 2. The denominator polynomi-
als R(¢g') and P(q™!) are assumed to be monic, and required to be stable. The
sampling rate is assumed to equal the symbol rate. If u(¢) is complex-valued, the
coeflicients of the filters must be complex.

Given a received sequence y(t), a model (5.6.1), (5.6.2) and a smoothing lagm > k,
the problem is to find polynomials (S, R, @, P) which minimise the MSE criterion
Ele(t)|? = E|u(t) — 4(t]t +m)[>. ' Because of the presence of a nonlinear decision
circuit, it is impossible to obtain closed-form expressions for an optimal estimator.
As in most previous treatments of the DFE-problem, we will simplify the problem
by assuming correct past decisions.

If previous decisions are correct, they can be used to completely eliminate the
interference, caused by past symbols, at the current received signal. In contrast
to linear equalisers, this can be achieved without any noise amplification. This is
more easily understood if Figure 5.7 is redrawn as in Figure 5.8. No inversion has
to be done. Instead, a feedforward from u(t — 1) is used. The nonlinearity is now
outside the signal path from u(¢) and v(t) to €(t). Thus, by assuming correct past
decisions we can transform the problem into a LQ optimisation problem®,

131t could be argued that a more relevant criterion is minimum probability of decision errors
(MPE), which leads to a nonlinear optimisation problem. However, Monsen [50] has concluded
that consideration of MPE and MSE lead to essentially the same error probability.

1For low signal to noise ratios, the assumption of correct past decisions is not appropriate.
Because of the high noise level, incorrect decisions will occur. They may even start a burst of
errors. This phenomenon is known as “error propagation”. If too many error bursts occur, they
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Figure 5.8: The decision feedback equalisation problem, when correct past deci-
sions are assumed. The signal u(t) is to be estimated from measurements z(t+m).

This problem formulation corresponds to the choices G = ¢ *B/A, G, = ¢~™ 71,
F=D=1,H=M/N,W=1,and R, =[S/R Q/P]in (5.2.4)-(5.2.7).

Introduce the following polynomials:

(™) 2 BN =1, +ng " +...+ 7507
¥g?) & AM=14+mg +. 49 (5:64)
algh) B2 y4+¢Q=1+aq +... +osag .

We are now able to state the following result.

Theorem 5.6.1

Assume the received data to be accurately described by (5.6.1),(5.6.2). The general
DFE (5.6.3) then attains the global minimum of J = Elu(t) — 4(t|t + m)[?, if and
only if the filters S/R and @/P have the same coprime factors as

5 _5N Q_ 9

R M P AM
where S1(¢7!) and Q(¢™"), together with polynomials L1.(¢) and Ls.(g), satisfy
the two coupled polynomial equations

(5.6.5)

¢" 7Sy + vl = a (5.6.6a)
—pS1 4+ ¢ Ly, = qla. (5.6.6b)
with polynomial degrees

8Q = 6L, =max(6y,6T)—1 .

will deteriorate the performance considerably and could in fact make the equaliser useless. For
a discussion, see [23] and [57].
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The minimal mean square estimation error is

A dz m—Fk
2 — u p—— "2 2 U
Ble(Wfin = g5, Taln 51505 = (L 68 plsil) - (569)

O
Proof: See [57], where optimality is verified using a non-—constructive variant of
the variational approach. A variation v(t) = Tiy(t + m) + Tou(t — 1) with two
terms is introduced. Orthogonality with respect to each of these terms is verified.
The Diophantine equations arise from the two orthogonality requirements.

Remark: Note that (5.6.6a) and (5.6.6b) represent two coupled polynomial equa-
tions, containing four unknown polynomials (S1(¢™), Q(g™Y)s Luu(q), La2x(9))-
Also, note that no spectral factorisation is required. The solution obtained here is,
of course, a special case of the one obtained in Section 5.4. It is, however, difficult
to derive it from that solution. Instead, by formulating a scalar problem which
utilises both y(t) and a(t) in Figure 5.2, the solution is readily obtained.

An explicit solution to (5.6.6a) and (5.6.6b) is given by the following result.

Theorem 5.6.2

The polynomials Sy, Ly and @, calculated in the following way, provide the unique
solution to the polynomial equations (5.6.6a) and (5.6.6b).

1. Solve for the coefficients of the polynomials S1(¢™*) and Ly(g™") in

A 0 | 1 O 171 s | [0 ]
. . | " . . .
Tm—k oo To l Ym—k -T2 1 Sm—k 1
PPV Pk | -3 v Tk ek 0
oo | : : 5 :
| 0 p 10 L & 1 Lol
(5.6.9)

2. With {s;} and {£;} obtained from step 1, perform the multiplication

K2 0 | 1 071 s« 7 [ 0]
: ' l B! ' : 0
Sm—k
To | : =] 1 (5.6.10)
Tsr . ‘ Y~ 7 l;:z—k O
S ; . :
0 e | 0 Ysv J L0 1 L ase |

yielding the coefficients of the polynomial a(g™h).
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3. Finally, calculate the polynomial Q(¢™!) from (5.6.4)
Q¢ = gla(g™) = (a™)) - (5.6.11)

The equivalent equalised channel (from u(t + m) to 4(t|t + m)) will be

-+ BA]\]I\'JSI — q"m"I% =q¢ ™ —q "¢ (5.6.12)
Equation (5.6.9) is obtained in the following way. Write (5.6.6a) and (5.6.6b) in
matrix form. Select all rows with known right hand sides and combine them into
a new system of equations, in the coefficients of S; and L1, only. For details, see
Appendix B of [57]. (Observe that the polynomial « is defined monic in (5.6.4).
With the leading coefficients of « fixed and nonzero, we avoid the trivial solution
S; = L1« = 0.) The matrix blocks in (5.6.9) are quadratic. If 7(¢™!) or v(¢™!) are
of order < m — k, zeros are used to fill up the corners of the blocks. The second
step represents calculation of « from equation (5.6.6a), with known S and Li:
751 ++vL1 = ¢™t*a. By further substitutions, a linear system for determining Sy
of only half the size of (5.6.9) can be derived. See [57].

Ceg=4¢

An important question is if a unique solution to (5.6.9) can always be found with-
out any restrictions on, for example, the coprimeness of 7(¢*) and y(¢™!).

Theorem 5.6.3

If p and the leading coefficient of B, b,, are not both zero, then (5.6.9) will always
have a unique solution, (S1, L1). O

Proof: See [57].

Remark: When both |b,| (= |7,|) and the noise variance ratio p are small, the
system (5.6.9) may be badly conditioned.

Summing up, one can conclude that an equaliser can be calculated using (5.6.5)
and (5.6.9)-(5.6.11) (Theorem 5.6.2). This procedure works under very general
conditions (Theorem 5.6.3). The resulting equaliser is MSE-optimal (Theorem
5.6.1). The minimal criterion value is given by (5.6.8), assuming correct past
decisions. The properties of the optimal DFE are emphasised in some more detail
below:

1. It is efficient to whiten the noise. The forward filter S/R contains the inverse
noise description in cascade with a transversal filter S} of order m — k.
After noise inversion, we have to equalise a channel ¢~*7/y = ¢ *BN/AM.
Therefore, the polynomials Sy, @) and P are determined exclusively by the
polynomials 7 and 4, not by their separate factors A, B, M and N.

2. A conventional DFE-structure (transversal filters both in the forward and
feedback loops in (5.6.3)) is optimal if and only if M =1 and A =1, In
other words, the channel must be adequately described by a transversal filter,
and the noise statistics by an autoregressive process.
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3. Theorem 5.6.1 provides us with an optimal filter structure and optimal poly-
nomial degrees. Hence, unnecessary overparametrisation is avoided. It also
gives guidelines on how to choose filter degrees in a conventional DFE.

4. In the criterion (5.6.8), the second term pS;.S1. represents noise transmission.
The first term Ly L1, is caused by residual intersymbol interference from the
first m — k taps of the equalised channel (), Z;-”;lk [€¢;%). Tt is also caused by
the deviation of the reference tap (at time index m — k) from 1 (Ay|4,]?). See
(5.6.12). We thus get a nice interpretation of one of the extra “dummy”-
polynomials. Asin all DFE’s, the equalised channel impulse response beyond
time index m — k is cancelled completely by the feedback filter. See (5.6.12).
Past symbols thus do not affect the present decision.

5. In the noise-free case (p = 0), L1, = L2, = 0, see (5.6.6b). For any m >
k, this gives |e(t)]* = 0, even when B is unstable. The reason for this
remarkable property is that, instead of inverting the system, the estimator
uses feedforward from u(¢ — 1). See Figure 5.8.

6. The denominator polynomials R and P are stable by construction, since A
and M are stable. In adaptive algorithms, stability of the estimates A and
M, or of R and P, would be required.

The use of the algorithm above in an adaptive equaliser for the American digital
mobile radio standard is investigated in [45]. Combined with a novel and efficient
channel estimator, it has achieved very good performance.

5.7 Concluding remarks

Why and when should a filter designer use the polynomial approach? What ad-
vantages does it offer from an engineering point of view, compared to e.g. a state
space approach [6] or Wiener design of FIR filters [34]7 We shall in this section
give some answers.

e Many properties of the resulting filter can be disclosed by inspection only. See,
for example, the remarks to the solutions obtained for the problems in Sections
5.4-5.6. Such information is hard to obtain from a corresponding state space ap-
proach. The obtained filters can also be examined directly using classical concepts,
such as frequency response, poles and zeros.

e The solution is often explicit, in terms of the model polynomials. (Note, for
example, the presence of the noise model denominator N as numerator factor of
the filters (5.3.10) and (5.5.15).) This not only helps a designer to gain engineering
insight, but also to build in design requirements. An example is the suggestion in
subsection 5.3.9 to use integrating signal models to avoid bias for non-zero mean
signals. The minimal criterion value can often be interpreted in terms of effects of
different design constraints. For example, in the differentiation problem of Section
5.5, performance of the estimator is limited by the effects of aliasing, noise and
finite smoothing lag. A designer will not only be able to calculate the limits of
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performance, but also to understand them.

¢ If an incorrect filter structure, with insufficient degrees of freedom is assumed,
a solution will not exist. In the polynomial derivation techniques, the warning
signals for this are inconsistencies or degenerated polynomial degrees. A polyno-
mial solution thus leads to the optimal structure and degrees of filters and their
polynomials. In contrast to the Wiener design of FIR filters [34], unnecessary
overparametrisation is avoided. This is of considerable importance, if the solution
is to be used in an indirect adaptive algorithm.

¢ Fixed lag smoothing does not complicate the solution or decrease insight, nor
do singular situations (where white noise is not present in all measurements), or
the introduction of frequency—dependent weighting matrices in the criteria.

Of course, the approach has limitations as well as strengths. Compared to Kalman
filtering, polynomial methods seem less well suited to some off-line problems such
as fixed point smoothing or fixed interval smoothing [6].

The derivation of solutions to multi-signal estimation problems is achieved with
almost the same number of algebraic steps as for scalar problems. Compare Sec-
tion 5.4 to subsection 5.3.3. However, the design equations themselves become
considerably more complex when matrix spectral factorisations and coprime fac-
torisations are required. The structure of a Kalman estimator, and the numerical
routines required for obtaining it, remain unchanged regardless of the dimensions
of y(t) and f(¢). In contrast, there is a considerable step in complexity between
polynomial solutions to scalar problems and to multivariable problems.

It is well known that the zeros of polynomials of high order are sensitive to vari-
ations in the coeflicients. Therfore, solutions based on the polynomial approach
will often have inferior numerical properties, as compared to a corresponding state
space approach, in particular for high order problems. There exist algorithms for
solutions of Riccati-equations that are very well-behaved numerically [43]. There-
fore, we suggest that for high order problems, a designer uses the polynomial
approach in order to derive optimal filters and to gain engineering insight, but
uses a state space approach for performing spectral factorisations.

Performance robustness is another important issue related to the discussed ap-
proach, as well as to any other filter design method. How well does a designed
filter perform under non—ideal conditions and in presence of modelling errors? The
performance of the estimators designed in this chapter can be sensitive to model
errors, if the filters have poles or zeros close to the unit circle. A methodology
which is flexible enough to encompass a variety of design requirements, and which

allows the designer to build performance robustness into the design, is presented
in [60], [61].
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