Chapter 1

Summary and Introduction

1.1 Introduction

The present thesis will focus on the estimation of signals and on feedfor-
ward control. The aim is to present a methodology for model-based design,
based on uncertain, linear and time-invariant dynamic models. The result-
ing method will be based on a probabilistic description of the uncertainty
in the assumed dynamics and on the minimization of averaged mean square
error, or Hs, criteria.
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Figure 1.1: Two types of problem formulations considered in the present the-
sis: The estimation of discrete-time signals from noisy data (left) and feedforward
control based on measurable discrete-time signals (right).

The two considered types of problems, illustrated in Figure 1.1, can be
characterized as follows:

e Signal Estimation. Based on discrete-time measurements, y(k), we
seek an estimate, u(k), of a desired signal, u(k). The desired signal
passes through, and is affected by, a linear time-invariant dynamic
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system G. Furthermore, disturbances, n(k), are corrupting the mea-
surements. To obtain the estimate, a linear discrete-time filter, R, is
to be designed.

The problem of signal estimation appears is numerous types of ap-
plications, of which the determination of temperatures, velocities and
accelerations constitute some examples. Another type of application
is mobile communications, where messages are to be retrieved from
received signals.

o Feedforward Control. Measurable disturbances or known com-
mand signals, w(k), do here affect a linear time-invariant dynamic
system G. Through the use of a linear discrete-time feedforward filter,
R¢, the effects of w(k) on the output, y(k), is to be controlled by an
input signal a(k).

Feedforward control includes disturbance measurement feedforward,
where the effect of a measurable disturbance, w(k), is to be reduced
or even cancelled. The problem formulation also includes servo design
problems in which the output from the system has to follow a com-
mand signal w(k). In some applications, the filter R is simply a gain
factor or constant matrix, while in other situations it is a complicated
dynamic system.

The design of filters or regulators could be based directly on experiment
data. Examples of such direct data-based methods are direct adaptive algo-
rithms for filtering and control, as well as experiment-based iterative adjust-
ment of filters with fixed structure. Alternatively, one can choose an indirect
model-based methodology. Dynamic models describing the relations between
signals are then obtained by first principles, through system identification,
or by other means. The filter or controller is then computed based on these
models. Model-based methods include many schemes for off-line optimiza-
tion of filters, as well as for indirect adaptive filtering and control. The
present thesis will focus on model-based methods, which utilize tools from
statistical signal processing.

In the present thesis, discrete-time (stationary) stochastic processes are used
to model signals. In such models, illustrated by Figure 1.2, the input signals
euw(k), e,(k) and e, (k) are white random vectors, and F, H and W are
linear discrete-time stable dynamic models selected to give the output signal
vectors u(k), n(k) and w(k) desired properties. These properties should
be adjusted to describe the a priori knowledge about the system under
consideration. The stochastic models are then used for the design. In, for
example, a model-based design of a signal estimator, the resulting estimator
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Figure 1.2: Discrete-time, linear, stochastic models for the signals u(k), v(k) and
w(k) introduced in the problem formulations described in Figure 1.1.

R1 will be a function of the a prior: information and on the criterion J; to
be minimized, i.e.

Rlzf(]:aga?{ﬂjl)' (11)

A problem with model-based design is that the inevitable modelling errors
constitute a potential source of performance degradation; If the models are
not accurate, then the performance of the filter, when applied to the actual
system, will differ from what could be expected.

To investigate the effects of model imperfections, and to reduce these effects,
models have to be complemented by quantitative information about model
uncertainty. Graphically, this can be illustrated as shown in Figure 1.3.
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Figure 1.3: An example of a more complete signal modelling. A nominal model,
Fo, is here complemented by a set of dynamic systems, an uncertainty model, AF,
which reflects the range of possible deviations from the nominal model.

If the relative differences between design models and actual systems are
small, then the model errors can be neglected. On the other hand, if the dif-
ferences are very large, then the accuracy of the models has to be improved
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through, for example, additional modelling, identification or adaptation. In
between these two extremes, there exists a wide range of model error sets,
for which the performance of a filter could be improved by taking knowledge
about the size of the uncertainty into account in the design. Formally, we
may then replace (1.1) by the computation of a modified filter, Ry,

R2 =g(.7:,A.7:,g,AQ,H,AH,J2) 5 (12)

where J5 is now a performance criterion which is to be minimized also with
respect to the uncertainty models AF, AG and AH. This is the aim of a
method for robust design. To summarize;

The present thesis is devoted to the model-based design of linear discrete-
time filters and feedforward regulators, in which uncertainty in dynamic
design models is explicitly taken into account.

The design methodology will be based on a probabilistic description of model
errors in linear dynamic models. Thus, in Figure 1.3, the model uncertainty
represented by AF will be considered as a stochastic entity.

The primary goal of the present chapter is to give an introduction to the
proposed design philosophy and the obtained results. We begin with an ex-
ample, which illustrates how the performance of a signal estimator may be
degraded when the true system does not coincide with the nominal model
used in the design.

Example 1.1 An introductory example

Consider the following linear and discrete-time stochastic system

y(k) = B(q™", p) u(k) + v(k) ,

where the scalar signal y(k) is measurable and where the scalar signal u(k)
is an autoregressive stochastic process

1
u(k) = ——
D¢
Here, {e(k)} and {v(k)} are assumed to be mutually uncorrelated, zero-
mean, stationary, and white noise sequences with known variances o? = 1
and 02 = 0.01, respectively. Using the backward shift operator, ¢ ly(k) =

y(k — 1), the transfer operators in the model above are specified by the
following two polynomials

B(gl,p) = 1—(1.60+p)qg ' 4+0.65¢ 2
D(g"Y) = 1-0.50q7".

e(k) .
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Above, B(q~!, p) represents an imperfectly known transducer, characterized
by the unknown parameter p, whereas 1/D(q 1) is a known autoregressive
model of the input signal u(k). The objective is now to find the linear
filtering estimate, a(k|k) (based on measurements up to time k), of the
input signal, u(k), which minimizes the variance of the estimation error

e(k) = u(k) — a(k|k) .

In other words, based on the nominal model, represented by B(q~ !, p) with
p=0,D(q '), 02 =1 and 62 = 0.01 and based on measurements y(s),
s < k, a stable and linear estimator,

a(klk) = R(g™) y(k) ,

is sought. See Figure 1.4.

Signal model Transducer v(k) Filter

e(k u(k k a(k|k
Q’l/D(q‘l) () B¢, p) v R((J‘l)—>( &

Figure 1.4: The problem setup of Example 1.1. The input u(k) is to be estimated
in spite of a parametric uncertainty in the second order FIR transducer model

B(q™, p).

The transfer function R(¢!) is to be designed so that the mean square
error criterion

7= B (ulk) (k)" (1.3)

is minimized. Here, E(-) denotes expectation taken with respect to the
stochastic noise sequences.

If the model corresponds to the true system, then the solution to this prob-
lem can be obtained by using a nominal Wiener or Kalman filter design.
Straightforward use of design equations from [2] results in the following
nominal Wiener filter

_ 0.8904
T 1-1.5411¢7" +0.6096 g2

n

Figure 1.5 shows how the mean square estimation error (MSE) (1.3) is
affected when R, is applied to systems with different values of the uncertain
parameter p (dashed curve). The figure also shows the variance of the input
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Nominal Wiener filter (dashed). Variance of u(k) (dash-dotted). Lower limit (dotted)
4 T T T T T T

3.5 \ -

2.5 \ .

MSE
N
T
|

150 \ / E

0.51 N - B

0 Il Il Il Il L
-0.25 -02 -015 -01 -0.05 0 0.05 0.1 0.15 0.2 0.25

Figure 1.5: The estimation error variance (MSE) (1.3) as a function of the un-
certain parameter p (= rho). The plot shows the performance obtained with the
nominal Wiener filter (dashed), the lower limit, obtained if the correct model is
used for every value of p (dotted), and the performance obtained when using the
trivial “zero-estimate” 4(k|k) = 0 (dash-dotted).

signal u(k) (dash-dotted curve), and also the performance that could be
obtained for the correct value of p is illustrated (dotted curve).

From Figure 1.5 it can be concluded that the performance of the nominal fil-
ter, Ry, is rather sensitive to the actual value of p.! The performance when
p is outside of the range p € (—0.12,0.16) is clearly unacceptable in the
sense that it is worse than the “trivial” estimate @(k|k) = 0 (dash-dotted),
which gives (k) = u(k). If parameter deviations of the order of magnitude
displayed by Figure 1.5 are expected, then there would be a need either to
estimate p or design a robust filter. A robust design would then take the
model uncertainty, here the range of the variation of p, into account. O

! A high signal-to-noise ratio (SNR = 10 log(Ev?(k)/Ev?(k)) =~ 21dB) has deliberately
been selected in the present example to emphasize the model mismatch.
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1.2 Issues in robust filter design

Robustness is, in itself, an ill-defined concept. It is common to distinguish
between stability robustness (maintaining stability in the presence of uncer-
tainty or variations in system properties) and the more ambitious goal of
performance robustness. The latter concept often means that a filter should
be designed so that a pre-specified level of performance can be guaranteed
for a specified type of system variation or model uncertainty. In other prob-
lem formulations, improving the performance robustness means that the
average performance of the design shall be improved. It should be noted
that there are always performance limitations in linear filtering, see, for ex-
ample, the work [33] of Goodwin et al.

To obtain robust designs, we must therefore specify the type of robust-
ness and the type of uncertainty, or system variations, for which robustness
should be improved. There are numerous possible causes for the misbe-
haviour of a signal processing system. For a given problem, we cannot
expect to guard against all different kinds of uncertainties with a single de-
sign tool. Below, four types of uncertainties are outlined, which may not all
be amendable by using the same type of robust design.

1. Parametric uncertainty. Although the degree of a linear system is
sometimes well known, some of the parameters are here assumed to
be uncertain to a specified extent. This was the case in Example 1.1
above. Both the known dynamics and the uncertain parameters are
sometimes allowed to be time-varying. Parametric uncertainty arises,
for example, when a non-linear system is linearized around operat-
ing points or state trajectories, with differing linearized dynamics.
Noise-induced uncertainty in identified models (represented by the pa-
rameter covariance matrix) also constitutes a parametric uncertainty.
Timing jitter, i.e. small variations in the sampling rate, can be rep-
resented by a parametric time-varying uncertainty in a sampled-data
model.

Methods designed to attain performance robustness in the presence
of parametric uncertainty aim at reducing the influence of, or even
decouple, the uncertain parameters from the signals affecting the per-
formance. In feedback systems, the use of a high gain feedback is
perhaps the most well-known tool for reducing sensitivity with regard
to parametric uncertainty.

2. Non-parametric uncertainty. A high order dynamic system of
unknown structure and degree is often approximated by a low or-
der linear model of a specified degree. This situation is denoted un-
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dermodelling, and the differences between the system and the model
represent a non-parametric, or unstructured, uncertainty. Identified
models mostly suffer from both parametric and non-parametric un-
certainty, see e.g. Ljung [72]. The question of how to make good use
of any available knowledge about the unstructured model errors is,
in general, difficult to answer. Hard or probabilistic bounds on the
frequency responses are often used. Such concepts may, however, be
of dubious value if the unmodelled dynamics is inherently nonlinear.

Robust performance of feedback control systems in the presence of
both parametric and non-parametric uncertainty is an active research
area with, as yet, no fully satisfactory solutions?. The problem has
been studied very little with regard to open-loop designs.

3. Uncertain statistics and outliers. If a filter is designed to be
optimal for Gaussian noise and/or signals, then the performance of the
filter may deteriorate significantly in the presence of signals with non-
Gaussian statistics. The effect of outliers (noise samples with large
magnitudes) on estimates obtained by Kalman filters or by RLS/LMS
adaptation laws® is another example.

Filters and detectors can be robustified with regard to uncertain statis-
tics by applying nonlinear transformations on measured signals or on
innovations signals. Various systematic schemes exist for designing
such nonlinearities, for given assumed classes of signal distributions.
Huber [49] performed the pioneering work in this field. See also the
survey paper [59] by Kassam and Poor, the paper [76] by Martin and
Mintz or [100] by Stahel. The simplest type of nonlinearity, effective
against noise outliers, is a limiter. It usually operates on the residual
signals in Kalman filters, Wiener filters and adaptation laws.

4. Abrupt structural or parametric changes. Such changes may be
due to the action of control logic, sudden changes in operating con-
ditions or sensor failures, among other causes. Filtering performance
can sometimes be rendered insensitive to these phenomena by design-
ing a set of different filters, each attuned to a specific situation or
failure mode. An estimator or change-detection device is required for

2One can, for example, note that a high gain feedback, designed to reduce the influence
of a parametric uncertainty, may result in instability if unstructured model errors are
present and not accounted for. The best approach in this context could be the y-method,
i.e. the use of the structured singular values, described by Doyle et al., see [28], [29], [101],
[95]. See also Maciejowski [73].

SRLS and LMS stand for Recursive Least Squares and Least Mean Squares,
respectively.
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selecting the output from one of the filters or from a linear combina-
tion of the filter outputs. See, for example, the work by Lainiotis [66].
Multiple redundant sensors, actuators and filters can also be used to
increase the reliability of systems for signal processing and control.

The way in which the model uncertainty is described, i.e. the error mod-
elling, is a central part of any robust design method. Error models are, by
necessity, imprecise; the exact modelling of uncertain dynamics would be
a contradiction in terms. A requirement for elaborate error models, and a
large engineering effort in obtaining them, would furthermore reduce the
attractiveness of a robust design methodology. On the other hand, crude
error models, which include a range of possible dynamics much wider than
the range actually encountered, could result in conservative, and possibly
useless, designs.

It can be difficult to ascertain the stability of an interconnected system in
cases where the dynamics in some subsystems are partly unknown. The
study of robust stability is a central issue in the analysis of feedback con-
trol systems. Stability can also be problematic in open-loop estimation and
feedforward control problems. If not all subsystems are guaranteed to be
stable within the whole uncertainty set, the differences between signals and
their estimates may grow without bounds. This is called divergence in the
literature on Kalman filtering.

In the present thesis, we will use a probabilistic approach to error modelling.
We will not aim for guaranteed performance, but will instead strive to min-
imize the average performance within the uncertainty set. This problem
formulation not only seems to be a good candidate of providing simplicity
and generality, but also helps to avoid conservative designs.

We will consider the design of discrete-time, linear, robust filters. The filters
are designed to be applied on open-loop, multivariable* discrete-time prob-
lems such as signal estimation, deconvolution, equalization, state estimation
and feedforward control. The performance criterion of interest is the average
mean square estimation error, or the average Ho-norm of transfer functions.
(The criterion will be defined in the next section.) The robustness of inter-
est concerns parametric or non-parametric, time-invariant uncertainties in
the dynamics of linear design models.

A large class of practically important problems, without feedback connec-
tions and with all uncertain systems assumed to be stable, is considered.

“Multivariable, in this context, refers to systems with multiple inputs and multiple
outputs, also called MIMO systems.
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In such situations, the non-existence of divergent estimates can be assured
in a straightforward way. An interesting topic could also be to use the re-
sulting linear, robust filters in schemes for obtaining also robustness against
noise outliers or in filter-banks. The design of such nonlinear algorithms is,
however, beyond the scope of the present thesis.

1.3 Stochastic uncertainty modelling and
averaged Ho-design

The approach to robust design to be presented in this thesis will be based on
the following assumption of model structure, and on the following selection
of optimization criterion:

e A set of (true) dynamic systems is assumed to be well described by a
set of discrete-time, linear, stable and time-invariant transfer function
matrices

F=F,+AF. (1.4)

We shall call such a set of models an extended design model. Above,
F, represents a stable nominal model, while an error model AF de-
scribes a set of stable, linear and time-invariant transfer functions,
parameterized by stochastic variables. The stochastic variables enter
linearly into AF.

e A single, robust, linear, stable, discrete-time filter is to be designed for
the whole class of possible systems, modelled by F. Robust perfor-
mance is obtained by minimizing the averaged mean square estimation
error criterion

J = traceE E (5(k) z—:(k)*) . (1.5)

Here, (k) is the estimation error vector, whereas E(-) and E(-) de-
note expectation with respect to stochastic noise sequences and the
stochastic variables parameterizing the error model AJF, respectively.

There are many conceivable alternatives to the criterion (1.5). The mean
square error could be replaced by another function. One example is the
consideration of the time-domain ¢; criterion; see, for example, Dahleh and
Diaz-Bobillo [23], Dahleh [22] or Mendlovitz [78]. Much recent interest has
been focused on the use of an H, criterion instead of the MSE, or Hs
criterion, see e.g. de Souza et al. [27], Nagpal and Khargonekar [81], Grim-
ble [37], Grimble and El Sayed [39], Shaked and de Souza [92], Shaked and
Theodor [93], Mangoubi et al. [74] or Xie et al. [115]. Instead of considering
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the average performance, one could instead choose to minimize the guaran-
teed performance for any system within the uncertainty set, see Section 1.4.

There are several reasons to consider the averaged MSE, or averaged Hs-
norm criterion:

e As opposed to an H, design, in which the filters are entirely deter-
mined based on “worst case” signal spectra, the criterion (1.5) takes
not only the range of the uncertainties in signal models into account
but their likelihood as well.

e We believe that designers are often more interested in the average per-
formance than the guarantee that the performance is bounded by (pos-
sibly very conservative) limits, determined by situations that might
hardly ever occur in reality.

e [t is our opinion that an approach to robust performance design based
on the extended design models (1.4) and the criterion (1.5) results in a
simpler, and less computationally demanding, design compared with
most alternatives known at present.

We selected a design criterion averaged with respect to model uncertainties;
thus, there is a need to stochastically describe these uncertainties. The
averaged mean square error has been used as criterion previously in the
literature, in particular by Chung and Bélanger [21], Speyer and Gustafson
[99] and Grimble [36]. These works were based on assumptions of small
parametric uncertainties in continuous-time models and on series expansions
of uncertain parameters. In the present thesis, we suggest the use of the
criterion (1.5) together with a special description of the error model AF in
(1.4). In our approach, the error model is assumed to be a product of two
factors,

AF = F1AF

where the transfer function elements of F; are fixed while AF' is a poly-
nomial matrix with stochastic variables as coefficients. Such models, which
can be obtained in many ways, can describe non-parametric uncertainty
and under-modelling as well as parametric uncertainty. The proposed er-
ror models also relate to the stochastic embedding concept presented by
Goodwin and co-workers in [32], [31]. It should be noted that, in the design
methods to be derived, no particular distribution for the extended design
model is required. Only the second order moments will be utilized in the
design.
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Example 1.1 continued. An extended design model for the transducer

We now assume that the transducer B(q !, p), see Figure 1.4, belongs to a
set of transducers parameterized by p. A particular value of p represents a
particular transducer within the set. We assume that the average value of
p is equal to zero. An extended design model can now be formulated as

Bn(q ') =B,(¢ ') +AB(¢ 1)
where

Bo(qh) = bo—biqg t+byg?
= 1-1.60¢g"" +0.65¢2
AB(gY) = Abqgt.

Above, the nominal model B,(¢™!) is intended to capture the average be-
haviour of the set of transducers, while AB (g !) should reflect the variations
within the set. In the error model, AB(q '), Ab; is used in place of p to
distinguish the model set from the system set. The stochastic coefficient
Ab; has the same variance as that assumed for p. O

The optimization of linear, time-invariant filters to minimize the mean
square error criterion is known as Wiener filtering, and originates in work by
Wiener [112]. The book [62] by Kuéera has inspired several research groups
to develop a polynomial approach to Wiener filtering and control problems.
In [2], Ahlén and Sternad presented a new technique for constructively de-
riving polynomial matrix design equations for Wiener filters. An advantage
of using a polynomial matrix approach is that a direct inspection of the filter
expression readily reveals important properties of the design. Furthermore,
efficient numerical algorithms are available for solving the design equations;
see, for example, Kucera [62] and also Appendices A and B of this thesis.

In the present thesis the ideas presented in [2] will be used to find a poly-
nomial matrix solution to the averaged criterion (1.5). Extended design
models (1.4) will then be represented by using matrix fraction descriptions.
The design equations for obtaining the robust multivariable Wiener filter
will be of the same type as the ones used for a nominal design: polynomial
matrix coprime factorizations, a polynomial matrix Diophantine equation
and a polynomial matrix spectral factorization. As compared to the nomi-
nal design, see, for example, [3], [4] or [39], the robust design requires only
straightforward additional calculations to take the assumed uncertainty into
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account. As an illustration, Example 1.1 is complemented by a robust de-
sign.

Example 1.1 continued. A robust filter design

The aim is now to find a robust estimator for the input signal u(k), see
Figure 1.4. By using the polynomial approach of e.g. [1] or [2], the nominal
design equations consist of the spectral factorization,

Ba(€7)Br(e) = 02B,(e7)B,(e™) + o D(e™7*) D ()
= 0.65e7% —2.645e ™ 4 3.995 — 2.645 ¢ + 0.65 72,

and the Diophantine equation,

Bo(q) = Qn(q™1)Bnl(q) + qLn(q)D(¢71) , (1.6)

which are to be solved with regard to the polynomials 3,(e™), Qn(q™1)
and L,(q), respectively. Based on these equations, the nominal filter is
obtained as

_ Qnlg ) 0.8904

Ru(g™ —
) Gu(g™Y)  1-1.5411¢71 +0.6096¢~2

The stable polynomial (3, (e™7“) represents the numerator of an innovations
representation of the measurement y(k), which has the spectral density

_ Ba(e7)Bu(e”)
D(e#)D(e”)

Dy (™) Dc(e7)
where the spectral density, ®.(e?), of the white innovations sequence €(k)
has been normalized to one.

Assume now that the coefficient modelled by b; can be expected to deviate
by no more than 15%. For a robust design minimizing (1.5) we can then
select to model the uncertain parameter p by using a stochastic variable Ab,
being uniformly distributed within a 15%-interval around zero, i.e. Ab; €
U(—0.24,0.24). The variance is thus assumed to be E(Ab?) = 0.0192. The
minimization of the criterion (1.5) results in a modified, averaged spectral
factorization equation, which provides the denominator polynomial of the
robust filter. Note that since Ab; is assumed to be independent of the noise
processes v(k) and e(k), the average, with respect to Aby, of the output
spectral density is given by

E(Qy(e™)) =
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where

Be(e™) B, (%) = 02By(e7) Bo(e*) + 02E (AB(e7)AB(e*))
+ agD(e—J“’)D(er)

= 0.65e772% —2.645 77 + 4.0142 — 2.645 €7 + 0.65 €72~

(1.7)

The only change in the Diophantine equation (1.6), which will be evident
from Chapter 4, is the replacement of 3, by G.:

Bo(q) = @r(a7)Br(a) + aLr(9) DY) -
The resulting robust Wiener filter is then given by

_ Q.(¢h 0.6408

R, (¢t =
Ha) Br(g™t)  1—1.3702¢7! +0.5076¢ 2

Here, the only difference between the nominal and robust designs is the cal-
culation of the averaged “double-sided” polynomial E (AB(e™*)AB(e)),
which appears in the averaged spectral factorization (1.7). In the present
example, we readily obtain

E (AB(e )AB(e™)) = E(Ab) = 0.0192 .

In Chapter 2 it is described how the corresponding calculations can be con-
ducted in a multivariable setting. The performance of the robust filter when
applied to different possible systems is displayed in Figure 1.6. The signif-
icant performance difference between robust and nominal designs results
from the, seemingly, small increase from 3.995 to 4.0142, in the middle term
of the design equation (1.7).

From Figure 1.6, we see that the robust filter (solid) is not at all as sensitive
as the nominal filter (dashed) to deviations in the transducer parameter p.
In fact, the performance is rather close to the lower obtainable limit (dot-
ted). The values of the averaged criterion (1.5) are J = 1.26 for the nominal
design and J = 0.63 for the robust design. If we compare to the “trivial” es-
timator, using u(k|k) = 0 (dash-dotted), we see that the robust filter results
in a better performance for all p > —0.17. This is a significant improve-
ment as compared with the nominal design. In Figure 1.6, the price paid
for obtaining robustness is evident; the performance for the nominal case
is degraded. When considering the improvement in non-nominal situations,
this deterioration might be a price well worth paying. O
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Robust (solid) and nominal (dashed) Wiener filters.
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Figure 1.6: This scenario is the same as that presented in Figure 1.5, except that
here the performance when the robust Wiener filter (solid) is applied on the set of
possible systems is also shown.

1.4 An alternative approach:
Uncertainty modelling with hard bounds
and minimax Hj-design

There do, of course, exist alternative ways of representing the model uncer-
tainty. A criterion for robust performance is often assumed to be equivalent
to guaranteeing a pre-specified performance for all systems within the uncer-
tainty set. Such a problem formulation relies on the existence of hard bounds
on the uncertainties. Without such bounds, no performance guarantees can
be given. Hard bounds in the frequency domain are one commonly used
specification in robust filter design. The bounds may then be represented
as
[AF ()] < L(w)

where L(w) is some frequency-dependent function. In multivariable con-
texts, bounds on the principal gains

7 (AF(w)) < L(w)

are frequently used. Here, 5(AF(w)) denotes the largest principal gain of
the transfer function matrix AF(w), i.e. the largest singular value as a func-
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tion of frequency®. These and other norm-bounded representations of the
spectral uncertainty may be found in, for example, the review by Kassam
and Poor [59] or the books by Maciejowski [73] and Boyd and Barrat [16].

As a representation of norm-bounded parametric uncertainties in time-
domain models, the state space model

ok +1) (Fo+ AF(K)) (k)

AF(k) = HAK)E (1.8)
AT(k)AKk) < I, k= 0,1,2,...

has recently become popular, see, for example de Souza et al. [27], Shaked
and de Souza [92], Theodor and Shaked [109] and Bolzern et al. [14], [15].
Above, H and E are known constant matrices which reflect how the uncer-
tainties affect the nominal state transition matrix F,.5

If performance guarantees are to be provided, it becomes natural to consider
some type of minimax optimization. By a minimax approach, we mean
minimization problems of the type

minsup J(A, Q)
R AQ

where A and @) represent uncertainties in the signal models and the noise
covariances, respectively, while J(-) is some scalar loss-function, for exam-
ple, the mean square (estimation) error, and R is the filter sought. Early
work on the subject is, for example, described in papers by D’Appolito and
Hutchinson [24] and Leondes and Pearson [68]. These papers dealt with
large, but bounded, uncertainties in the plant and noise covariances. A pa-
per by Martin and Mintz [76] accounted for both spectral uncertainty and
uncertainty in the noise distribution. The resulting robust filters in [76] will,
however, tend to be of very high order.

The minimax design of a filter R becomes very complex, unless there exists
either a saddle point or a boundary point solution. A crucial condition here
is that

i J(-) = inJ(-) . 1.9
min max () max min () (1.9)

If relation (1.9) holds, then one can search the optimal filter which gives
the worst nominal performance and then use that filter. As compared with

5The principal gain is related to the Ho,-norm of a transfer function, since ||AF (w)||oo
= sup,, 0 (AF(w)). In the scalar case, ||AF(w)||c is the peak-value of |AF(w)].
%In some formulations also F, is allowed to be time-varying.
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the task of finding the worst case with respect to a set of models, F, and
minimizing with respect to the filter class, R, the former is a much simpler
task. However, even when the condition (1.9) is fulfilled, a minimax design
can still be computationally demanding. The systematic use of saddle point
conditions has been the focus of the work by Kassam et al. [58], [80], Poor
[90], Vastola and Poor [110] and was reviewed by Kassam and Poor [59].
Haddad and Bernstein [42] propose an alternative approach in which the
uncertainties are modelled by white noise sequences.

A problem encountered in minimax designs is that condition (1.9) is not
fulfilled in numerous problems, which makes them very difficult to solve.
See, for instance, Example 5 in [106].

Kalman filter-like estimators have recently been developed for systems with
structured and possibly time-varying parametric uncertainty of the type

2k +1) = (Fo + HAK)E) 2 (k) + w(k)

where the matrix A(k) contains norm-bounded, uncertain parameters, see
also (1.8) above. This approach originates from work of Ian Petersen and
others on the subject of quadratic stabilization. Papers by Shaked and
de Souza [92], Petersen and McFarlane [89], Bolzern et al. [14] and Xie et
al. [113] describe continuous-time results. In [114], Xie, Soh and de Souza
present a discrete-time, one-step-ahead predictor. This last paper will be
considered in more detail in Chapter 7. For systems that are stable for all
A(k), an upper bound on the estimation error covariance matrix can be
minimized by solving two coupled Riccati-type equations, combined with a
one-dimensional numerical search. This represents a computational simpli-
fication, as compared with previous minimax designs. The resulting esti-
mators do, however, turn out to be rather conservative, partly because they
are based on worst-case design and possibly also because the uncertainty
description allows for arbitrary time-variations. See Chapter 7 for a further
discussion of this issue.

The method for designing robust filters suggested in the present thesis is
computationally less demanding than any of the minimax schemes referred
to above. It also avoids two drawbacks of worst-case designs: First, the
stochastic variables in the error model AF need not have compact support.
Thus, the descriptions of model uncertainties may have “soft bounds”, which
are more readily obtainable in a noisy environment than the hard bounds re-
quired for minimax design. Second, not only the range of the uncertainties,
but also their likelihood is taken into account by taking the expectation E(-)
of the MSE. Highly probable model errors will affect the estimator design
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more than very rare “worst cases” will. Therefore, the performance loss in
the nominal case, which is a price paid for robustness, becomes smaller than
for a minimax design. In other words, conservativeness is reduced. There
do, of course, exist applications where a worst-case design is mandatory,
e.g. for safety reasons. However, we believe that the average performance
of filters is often a more appropriate measure of performance robustness.

Let us consider Example 1.1 once more in order to see what performance
we obtain by using a filter designed by minimizing the worst-case MSE.

Example 1.1 continued. A minimazx filter design

The minimax filter R inimaer Was found by making a numerical search within
the assumed interval p € (—0.24,0.24), as the solution to the problem

minsup E(e%(k)) .
R »p
In this example the saddle point condition (1.9) is fulfilled, and the worst at-
tainable performance (the highest value of the dotted curves in Figures 1.5
1.7) is found at the boundary point p = —0.24. The selected filter, thus,
equals the Wiener filter designed for p = —0.24. The numerical expression
of the resulting filter is

0.2661
1-1.2027¢7" +0.3460¢~2

Rminimaw (q_l ) =

and the performance obtained when R ,inimaz 1S applied to different possible
systems is displayed in Figure 1.7.

From Figure 1.7, we see that at the boundary point, p = —0.24, where
Ruminimaz (bold dotted curve) results in the highest MSE, it also, by de-
sign, coincides with the optimal Wiener filter (non-bold dotted curve) at
that point. Therefore, no other linear estimator can decrease the corre-
sponding MSE value, and we have thus found an optimal minimax filter
for the present problem. Also, from Figure 1.7, we see that the minimax
filter fulfills its design task, namely, minimizing the maximum value of the
MSE within the assumed uncertainty set. But we also see the drawback
of the minimax design: The performance for nominal or almost nominal
situations is significantly degraded. Figure 1.7 also reveals that the robust
Wiener filter, based on the averaged performance criterion, clearly outper-
forms the minimax filter for most values of p. This is true, in particular,
for nominal or almost nominal situations where the conservativeness of the



1.5. Outline of the thesis 19

Robust (solid) and nominal (dashed) Wiener filters. Minimax filter (upper dotted).
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Figure 1.7: The same scenario as in Figure 1.6, but here we also depict the
performance when a filter, designed based on a minimax criterion (bold dotted
curve), is applied to the set of possible systems. The minimax solution here is a
Wiener filter, designed for the boundary point p = —0.24.

minimax filter is pronounced. In the present problem, the robust Wiener
filter performs better or much better over 80% of the range of p.” O

1.5 OQutline of the thesis

The different chapters can be read separately, but we recommend the reader
to start with Section 2.2, to get acquainted with the properties of the design
model used for the robust designs. We also recommend that the reader, at
least, browse through Chapter 4 before reading Chapter 5. The problems
presented in these two chapters are dual, and the discussion given in Chap-
ter 5 is not as extensive as the discussion given in Chapter 4. Readers with
a particular interest in the design issues can defer reading Chapter 3 until
needed. Below an outline of each chapter to follow is presented.

"In the remaining range of variation, —0.24 < p < —0.14, the estimation problem is
hopelessly difficult: No filtering estimator can perform significantly better than the trivial
zero estimator, 4(k|k) = 0 (dash-dotted curve). While the performance of the minimax
estimator is better than that of the averaged estimator for p < —0.16, the resulting
performance can hardly be considered useful.
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Chapter 2: Probabilistic Error Models. The extended design model
is introduced and discussed. Section 2.2 presents the properties and the pa-
rameterization of the extended design model. The idea behind the extended
design model and the subsequent filter design is illustrated by Figure 2.1.
Covariance matrices for the error models and the calculation of averaged
polynomial matrices are the subjects of Section 2.3-2.4. Examples are also
presented for illustration.

Chapter 3: Obtaining Error Models. In this chapter we discuss both
how to obtain error models and how to transform them so as to fit into
the extended design model framework. The most simple and pragmatic
way of obtaining the extended error models is to tune the error models di-
rectly based on a priori information. The error models are then used as
robustness “tuning knobs”. Pragmatic tuning is considered in Section 3.2.
Ways in which error models can be obtained from system identification, and
from frequency domain data are discussed in Sections 3.3 and 3.6, respec-
tively. The transformation of error models, obtained from first principles,
into discrete-time extended design models is the subject of Section 3.4.

The extended design model may also be used to capture slow time-variations
in the dynamics of systems, see Section 3.5. In the error modelling, it may
happen that the obtained design model is non-linear in the stochastic pa-
rameters parameterizing the error model. This can be the case when an
ARMA (Autoregressive moving average) model is obtained by means of sys-
tem identification. Therefore, in Sections 3.7-3.8, we show how extended
design models are obtained by means of series expansions when uncertain
parameters affect design models in a non-linear way. Both transfer function
models (Section 3.7) and state space models (Section 3.8) are considered.
Several examples are provided to illustrate the results. The chapter is con-
cluded with some remarks in Section 3.9.

Chapter 4: Robust Multivariable H,; Estimation. This chapter,
which constitutes the central part of the thesis, concerns the multivari-
able Wiener estimator for smoothing, prediction, filtering and deconvolu-
tion. The problem formulation is introduced in Section 4.2, see Figure 4.1,
followed by a general parameterization of the design models in Section 4.3.
Based on these two sections, the derivation of a robust multivariable Wiener
filter is presented in Section 4.4. The resulting filter is a generalization of
the estimator for scalar problems presented by Sternad and Ahlén [106]. Tt
is also a generalization to robust design of the nominal multivariable Wiener
filter, presented in [2], [3] by Ahlén and Sternad.
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The general solution of Section 4.4 includes a rather large number of de-
sign equations in a multivariable setting. A radical simplification is both
desirable and possible. For this purpose, a simplified parameterization of
the models is presented in Section 4.5. The use of matrix fraction descrip-
tions with diagonal denominators and common denominator forms leads to
a solution which, in fact, is significantly simpler and more numerically well-
behaved than the corresponding nominal Ho-designs (without uncertainty)
presented in [2] or [39]. It turns out that taking model uncertainty into ac-
count in the filter design does not require any new types of design equations.
We end up with two equations for robust estimator design: a polynomial
matrix spectral factorization and a unilateral polynomial matrix Diophan-
tine equation. (In the general solution of Section 4.4, coprime factorizations
of polynomial matrices also have to be performed.) The solution provides
structural insight; important properties of a robust estimator are evident
by direct inspection of the filter expression. The special case of estimating
signals in white noise is considered in Section 4.6. In this case an explicit
solution of the Diophantine equation can be found®. Thus, only one design
equation, namely the spectral factorization, has to be solved when estimat-
ing signals in white noise.

Analytical expressions for evaluating the performance of the robust filter
are given in Section 4.7. Since the extended design models are to be linear
in the uncertain parameters, it is, mathematically, possible to obtain a filter
identical to the robust filter by assuming a suitable, artificial, noise statistics
in a conventional Wiener filter design. This is the subject of Section 4.8.
From this interpretation we learn that model uncertainty in the input sig-
nal model has the same effect as an increase in the signal-to-noise ratio,
while uncertainties in the disturbance models are equivalent to a decrease
in the signal-to-noise ratio. Uncertainties in the transducer models act like
additive measurement noise. The impact of these uncertainties depend on
the energy of the input signals in the corresponding frequency regions. We
also discuss the feasibility of directly robustifying a (nominal) Wiener filter
design by representing the model uncertainties as additive coloured noises.
The chapter is concluded by presenting a detailed step-by-step design ex-
ample in Section 4.9.

Chapter 5: Robust Multivariable Hy; Feedforward Control. This
chapter deals with the design of multivariable, robust feedforward con-
trollers. Because of the dual relation between feedforward control and de-
convolution, demonstrated by Bernhardsson and Sternad in [11], this chap-

8This property first noted by Lindbom in [70].
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ter is not as comprehensive as Chapter 4. Section 5.2 presents the problem
formulation. Thereafter, in Section 5.3-5.4, the multivariable robust feed-
forward controller is derived for a general setup, followed in Section 5.5 by
a simplified robust design in the same spirit as in Section 4.5. The results
of Chapter 5 are a generalization to multivariable systems of the scalar ro-
bust feedforward controller presented by Sternad and Ahlén in [106]. The
proposed design also generalizes the multivariable feedforward controller
presented by Sternad and Ahlén in [105], [104] to the case with uncertain
models.

Both Chapter 4 and Chapter 5 constitute a generalization to uncertain de-
sign models of the polynomial equations methodology, pioneered in [62], and
further developed in [63], by Kucera.

Chapter 6: Robust State Estimation. Using a state space formulation,
the stochastic extended design models and the averaged MSE criterion, ro-
bust state estimators are derived in this chapter. One of the aims of Chap-
ter 6 is to illustrate how the probabilistic error models may be incorporated
to robustify, not only Wiener estimators, but also Kalman-like state esti-
mators and adaptation algorithms for parameter tracking. It is shown how
the extended design models can be used to obtain robust Kalman state esti-
mators for prediction, filtering and fixed lag smoothing in Section 6.2. The
robustness is obtained by the means of extending the state space models
and re-defining the noise covariance matrices to account for the assumed
model uncertainty. This is in perfect agreement with the discussion given in
Section 4.8. An example illustrating the design of robust state estimators
is given at the end of Section 6.2.

Using the results of the Section 6.2, algorithms can be formulated for adap-
tive estimation of time-varying parameters in linear regressor models, based
on uncertain a priori information on the statistical properties of these pa-
rameter variations. A robust tracking algorithm, which complements the
Wiener-based methodology for designing tracking algorithms developed by
Lindbom in [70], is derived in Section 6.3. The algorithm is illustrated in
Chapter 7.

Chapter 7: A Concluding Example. In this chapter a detailed com-
parison with a minimax Ho approach to robust filtering is presented. We
consider an example presented by Xie et al. in [115] and further examined
by Theodor and Shaked in [109]. The problem formulation is given in Sec-
tion 7.3. The approach proposed in [115] is reviewed in Section 7.3, while
the results presented in [109] are given in Section 7.4. It is shown that the
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approach proposed in [115] results in a very conservative design, while the
design as proposed in [109] performs better. As a comparison, we use the
results from Section 3.7 to obtain a suitable extended design model in Sec-
tion 7.5. Using this model a robust Wiener filter, according to the results
of Chapter 4, is designed in Section 7.6. Thereafter, in Section 7.7, a robust
Kalman predictor is derived along the lines of Chapter 6. Comparisons to
the estimator proposed in [115] and [109] are summarized by a discussion
in Section 7.8.

Chapter 8: Conclusions. Here the thesis is concluded by presenting a
summary of the results obtained. In addition, suggestions for future re-
search are offered and discussed.

Appendix A: Solving the Bilateral Diophantine Equation. This
appendix contains an algorithm for solving the bilateral polynomial matrix
Diophantine equation encountered in Section 4.4 and 5.4.

Appendix B: MATLAB™ Algorithms. Here, a short description of
some MATLAB™ .m files for working with the robust Wiener filter design
using MATLAB™ is included. These .m files can be obtained upon request.



