Chapter 1

Summary and Introduction

There is a long-standing and growing interest in computer algorithms which
provide means for flexibility, for adaptation and for learning from mistakes.
Within different application areas, such devices are known as learning sys-
tems [129], adaptive systems, adaptive filters [51], [52],[90],[110],[135] and
adaptive controllers [41],[137].

Models of the desired response of the system and models of the external
world are central building blocks of such schemes. These models are often
represented as dynamic systems with adjustable parameters. When the dy-
namics is time-varying, the parameters need to be varied by an adjustment
scheme called an adaptation law, or a parameter tracking algorithm.

The primary aim of the present thesis is to provide a framework for the
systematic design of adaptation laws for linear regression models of dynamic
systems. The work will result in a class of algorithms, which represent
different tradeoffs between performance and algorithm complexity. The
framework will also prove useful in the analysis of the properties of existing
and new parameter tracking algorithms.

1.1 Parameter tracking: Outlining the problem

The task of adaptation laws can often be formulated as that of modeling
the dynamic response of a known signal. A known input signal u; is to
be related to the response, or output, y; by adjusting parameters of an
input-output model. (Time series modeling problems without inputs will
not be considered here.) Let us outline how adaptation problems are solved
at present, and introduce the types of questions that have motivated the
present work.
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1.1.1 Tracking the parameters of linear regression models

Dynamic models could be structured in various ways, but the linear regres-
sion is, at present, the by far most popular and well understood structure
[16],[107],[135]. Linear regression models are linear in the adjustable param-
eters, and this simplifies both the design and the analysis of adaptation laws.
Our interest will in this thesis be focused on multivariate linear regression
models, expressed as

Yy = G + &t
Here, 3 is a column vector of dimension n,. It represents an estimate of the

measured signal y;, at the discrete time instant denoted by the integer f.
All signals may be complex-valued.
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Figure 1.1: The linear regression model structure (1.1) and an error-driven adap-
tation law.

The column vector h; contains parameters, which may vary with time, and
the regressor matriz @} contains signals which are known or computable at
time t. The signal y; represents either a desired response or the response of
an external process, which is to be modeled. See Figure 1.2. In the first case,
the task is called direct adaptation, whereas in the second case, we have a
problem of system identification. The use of adaptively identified models in
the design of a time-varying filter or controller is termed indirect adaptation.

The elements of the regressor matrix ¢} may consist of delayed inputs and
outputs as well as filtered [131] and also nonlinear functions [37] of inputs
and outputs. In this thesis, the discussion will be specialized to models in
which delayed or filtered versions of the input y; are not utilized as regressor
variables.

The estimation error ; of the linear regression model structure is also, in
various contexts, referred to as the residual, the prediction error, the equa-
tion error and the output error. The parameters of the model (1.1) are
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Figure 1.2: Two ways of utilizing a linear regression model: Direct adaptation of
a linear filter and system identification.

to be adjusted so that the estimation error ; is minimized, in some sense.
Model adjustment could be viewed exclusively as a task of criterion mini-
mization; the error ¢; should be minimized, for a particular set of signals

{yg,UK; €:0...t}.

Here, the problem will be formulated somewhat differently. We will mainly
focus on the misadjustment of the parameter estimates hy with respect to an
ideal adjustment. The problem of adaptive modeling can be formulated in
this way only under certain conditions. If the regressors are seen as stochas-
tic variables, then the optimal adjustment of the parameters will, in general,
depend on the statistical properties, such as the spectral content, of the re-
gressors [85]. A unique underlying set of “true parameters” will therefore,
in general, not exist. An exception to this rule is a situation described below.

Assumption 1.1 The signal y; can be described by a dynamic system with
the same structure as that of the model (1.1),

v = Qihe + v, (1.2)

where the noise v; has zero mean and is statistically independent of both
the vector h; and of the regression matrix ¢} O

Assumption 1.1 can be approximately fulfilled in a large number of practical
adaptation problems, by selecting the structure of the model (1.1) in an ap-
propriate way. The choice hy = hy would then represent an ideal adjustment
of the model parameters, on average over all realizations of the regressors
and the noise. We may then refer to the vector h; as the true parameters.
Under Assumption 1.1, it becomes meaningful to define the task of a pa-
rameter tracking algorithm as that of making the estimates follow the true
parameters, by minimizing some function of the parameter estimation error
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ilt=ht—ilt.

Since the true parameters are unmeasurable, the minimization of the pa-
rameter adjustment error must be performed indirectly, by minimizing a
function of the estimation error

&= Y—9 = Ye—pilhe = pthito . (1.3)
A commonly used criterion for minimizing the estimation error is the win-
dowed mean square error (MSE)

t t Ty . .
Sweeter = > wed |y —inl? (1.4)
£=0 =0 =1

where the scalar function wy, represents a weighting profile and * denotes
complex conjugation and transposition. Differing weights on the compo-
nents €, = y; — y; of the error vector could also be introduced.

An example of a special case of (1.1) is a scalar second order finite impulse
response (FIR) model

Yy = ﬁ?ut =+ il%ut—l +é€t (1.5)
obtained by the choice

* 7 B?
or = (wpu1) hy = il
t .

FIR filters and models are utilized in numerous applications [107]. An
area of growing importance is the modeling of fading transmaission channels
in systems for personal, indoor and mobile radio communications. Such
channels can be represented by FIR filters with time-varying parameters.
Their estimation is important to achieve error-free retrieval of transmitted
information. This thesis will, in particular, consider Time Division Multi-
ple Access [87] systems, in which sets of symbols are transmitted in data
frames of fixed length.! Within each frame (or burst), a small fraction of
the transmitted data, the training sequence, is known by the receiver. The
training sequence can be correlated with the received signal, to obtain an
estimate of the transmission channel. A detector, or equalizer, is then de-
signed by using the estimated channel model, with the aim of retrieving

IFIR models with time-varying parameters are also suitable as channel models for mo-
bile radio systems based on DS-CDMA (Direct Sequence Code Division Multiple Access)
[40],[109],[127] That type of application is, however, not investigated here.
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the remaining data. This procedure is repeated for each data frame [87].
The time dispersion of the communication channel is caused by multipath
propagation; different signal paths have differing transmission delays. The
time variability, the fading, is due to the mobile moving through standing
wave patterns, caused by multiple scattering of the electromagnetic waves
[56],[75],[76],[130]. The estimation of channel models for TDMA systems,
with parameters that vary considerably within a few samples, will recur as
an example throughout the thesis. The problem is discussed in depth in the
Chapters 6 and 8.

1.1.2 Commonly used tracking algorithms

The art of adjusting model parameters time-invariant systems (h; in (1.2)
independent of time), has been studied for decades within the field of system
identification [15]. This rather mature field is now covered by many books
[60],[85],[125]. For time-invariant systems, the well-known least squares (LS)
method can be utilized to adjust the parameters of the linear regression
model (1.1).

The use of a batch least squares method would be a straightforward way
to estimate a time-varying parameter vector h;. The time series are then
partitioned into subsets (batches) of data. For each batch, a model with
constant parameters is adjusted by minimizing the sum of squared errors &;.
The result is a piecewise constant parameter estimate.

A more commonly used alternative is to use recursive algorithms, which
compute new parameter estimates at time ¢ by processing previous esti-
mates. A frequently utilized class of recursive algorithms is specified by

& = Y - SOIIAHA
ht = ht—l + I‘t%)t&?t . (16)

Here, ¢;e; is the instantaneous gradient of %|€t|2 with respect to the pre-
vious estimate h; 1. The gain matrix I'; may modify this gradient updat-
ing direction. A unifying framework for describing algorithms for recursive
identification, as well as stochastic averaging methods for analysis, were in-
troduced by Ljung in the 1970’s. See the book [84] by Ljung and Séderstrom.

The LMS algorithm, introduced by Widrow and Hoff around 1960 [132],
is obtained by substituting the gain matrix I'; in (1.6) by a scalar gain u.
The LMS algorithm is the earliest, the simplest, but still the most widely
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utilized recursive scheme.

The recursive least squares (RLS) algorithm utilizes a gain matrix obtained
via a Riccati equation. That equation is derived by minimizing the criterion
(1.4) with respect to a time-invariant parameter h. The tracking capability
will be determined by the time window wy in (1.4). With a non-windowed
algorithm (w, = constant), the gain matrix I'; would go to zero as t — oo,
so the capacity for tracking would be lost. That effect can be avoided by
discounting old data. An exponential window

wy = /\t—é

is often used for this purpose, but other suggestions exist as well, see e.g.
[78],[100] and [101]

The application of algorithms of the class (1.6), which were originally de-
rived for the recursive identification of time-invariant parameters, is one way
to solve parameter tracking problems. It is, however, not the only way. As
will be discussed in Section 2.4.3, it is rarely the optimal way.

1.1.3 Towards a systematic methodology for the design of
tracking algorithms

A fundamental tradeoff is encountered in the design of tracking algorithms
based on windowed criteria, such as (1.4): with a long time window, the
estimate will tend to lag behind the trajectory of the true parameter vector.
This effect is called a lag error. The lag can be reduced by shortening the
effective length of the window, but that would instead increase the noise
sensitivity of the estimate.

The tradeoff between lag error and noise sensitivity can be affected by the
batch length in batch-LS schemes, by the scalar adaptation gain in LMS
and by the forgetting factor in exponentially windowed RLS estimators.
The effect of adjusting the gain of an LMS algorithm is illustrated by Fig-
ure 1.3. Numerous papers have discussed the optimal adjustment of dif-
ferent methods. See e.g. [39],[89],[133] for LMS, [25],[48],[83] for RLS and
[27],[78],[86],[95] for studies which compare the performance of different al-
gorithms. The LMS and the RLS algorithms have been claimed to be just
about equally good for tracking of slowly drifting parameters, cf. e.g. [134].
The same conclusion will be drawn in this thesis.

For slow time variations of h;, various reasonably tuned algorithms may all
turn out to be adequate. The situation is very different when the param-
eters vary on time scales on the order of tens of samples. For fast time
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Figure 1.3: Illustration of the tracking performance of the LMS algorithm (solid
line), for two different values of the step length parameter T'y = uI, u = 0.02 (left)
and g = 0.4 (right). The dashed lines represent the true parameter variations.

variations, there may not exist any choice of time window which results in
an acceptable tracking performance. That situation was encountered in an
investigation of a digital communication problem [79], which motivated and
inspired the work to be presented here.

Example 1.1 Tracking of parameters of fading mobile radio channels in

TDMA systems

In the North American D-AMPS or IS-54 standard, the discrete-time base-
band transmission channel can be described by the FIR model (1.5). Its
coefficients will vary appreciably during a few symbol times, as is evident
from Figure 1.4. A model based on the training sequence, which consists of
14 symbols, can therefore not be relied upon over the whole duration of a
frame of 170 symbols, so adaptation will be required.

Figure 1.5 illustrates a scheme for the simultaneous estimation of the trans-
mitted symbols and of the parameters of a channel model or an equalizer.
An inherent difficulty with such adaptive equalizers is that the updating
of the parameters has to utilize estimates #; of the transmitted symbols as
regressors. A small increase of the average tracking error will result in a
large increase of the probability of symbol estimation errors. If the symbol
estimates used as regressor variables are frequently incorrect, then there is
even a potential risk of catastrophic failure: The tracking ability may be
lost completely.

Consequently, the use of an adaptation algorithm that attains small tracking
errors is of crucial importance in this type of receiver. When investigating
the performance of different tracking algorithms, it was found that the LMS
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Figure 1.4: Characteristic variation of a fading mobile radio channel coefficient
in an IS-54 system, for a mobile traveling at 100 km/h, during one burst (left), and
during ten bursts (right).
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Figure 1.5: Adaptive channel equalization. In learning-directed mode, the adap-
tation is based on training data. At time instant ¢ = Ny + 1, the adaptation is
switched into decision-directed mode and decisioned symbols @ are used as regres-
sor variables for the parameter adaptation.

method was inadequate. The use of windowed RLS resulted in a more com-
plex algorithm, but not in an improved performance. No amount of tuning
of these algorithms resulted in an acceptable performance, as measured by
the bit error rate at moderate signal to noise ratios O

In situations such as the one described by Example 1.1, the designer is forced
to consider more fundamental structural adjustments, as a complement to
parameter tuning, of the adaptation scheme. This brings us to a key issue
of the present thesis:

How can structural adjustments of adaptation
algorithms be performed systematically?

Before this question can be answered, promising types of structural modifi-
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cations of adaptation laws must be investigated. Expressed differently, we
may ask: what types of additional side information or a prior: information
could be of use, and how could it guide our design efforts?

When trying to address these questions, it can be noted that there are at
least two types of information, that cannot be directly utilized in recursive
algorithms with the structure (1.6).

1. The use of future data values. In off-line modeling as well as in
some on-line applications, the estimation of Ay, where &k < 0, can be
based on outputs and regressor data collected up to time ¢. The use
of such fized lag smoothing estimates ilt 1kt would reduce the lag error
drastically. Smoothing should be implemented, wherever possible.
The methodology to be presented in the coming chapters has therefore
been formulated to include the design of smoothing estimators, as well
as of filtering (k = 0) and prediction (k > 0) estimators.

2. Knowledge of the dynamics of the parameters. Consider, for
example, a situation where the parameters are known to vary ap-
proximately as sinusoids with known frequencies. One could then
strive to redesign (1.6) into an algorithm which performs bandpass
filtering around the characteristic frequency. This could improve the
tracking performance significantly, as compared to the use of (1.6)
directly, which essentially performs lowpass filtering. Modifications
along these lines would introduce dynamic systems, filters, into the
recursions (1.6). A main aim of the present work is the development
of analytical design techniques for the construction of such filters.

The performance of tracking algorithms is important, but it is far from the
only issue affecting the choice of algorithm. Other important aspects include
the robustness with respect to bad excitation properties of the regressors
[137], and robustness with respect to large but infrequent noise samples, or
outliers [5],[54],[85].

The computational complexity is also a major issue. A low complexity
is crucial in many high-speed signal processing applications, such as the
adaptive equalization problem introduced in Example 1.1. The present work
has therefore been aimed at answering also the following question:

How can tracking algorithms be designed to provide (nearly) optimal
performance at a given, specified, level of complexity?

It has turned out that the use of models for the time-varying parameters h;
is a key element in the answer to both of the above questions.
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1.1.4 Hypermodels and Kalman estimators

It is convenient to formalize a prior: knowledge of the properties of h; as
a mathematical model. The time-varying true parameters will therefore be
regarded as signals, and dynamic models are introduced to describe their be-
havior. It is natural to use linear models, unless there are strong reasons to
suspect that the dynamics of h; is inherently highly nonlinear. Linear time-
invariant models can be represented in state space form, as a Markovian
model

Tir1 = Foy + Mmy + Gegyq
ht = H.CCt . (17)

Here, x; is the state vector, m; represents any measurable vector which
affects the parameters in a known way and F, M, G, H are matrices of ap-
propriate dimensions. The initial state xy is assumed to be unknown and
the state is affected by the white random vector e;. The random vector e,
which has a specified covariance matrix, will be called the driving noise of
the model.

Explicit models of the dynamics of time-varying (true) parameters have be-
come known as hypermodels. Their use in the design of adaptive algorithms
for regression models have been discussed by Benveniste and co-workers
[10],[11]. The use of hypermodels in the adaptation of time-varying models
of time series has been exploited by e.g. Grenier [44] and by Kitagawa and
Gersch [63]. The model (1.7), with m; = 0, can be used in the description
of a variety of situations:

e Constant parameters. This case is described by the use of F=H =1
and ez = 0.

e Parameters may evolve as linear combinations of deterministic func-
tions, such as ramps, parabolas or sinusoids with known frequency.
Models which generate such functions will be called deterministic hy-
permodels. The states can then be regarded as coefficients in a func-
tional series model of the time series h;. For ramp functions, double
integration of an initial value is required, while parabolic functions
are generated by triple integration. The dimension of the state vec-
tor x; will, in general, be higher than the dimension of the vector hy,
since several state variables are required for the description of each
parameter. The driving noise can be zero, resulting in a purely de-
terministic model, with unknown initial condition. The noise could
also be assumed to be a random spike sequence, such as a Bernoulli-
Gaussian sequence [96], resulting in a piecewise deterministic model.
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Deterministic or functional series descriptions have been utilized in
e.g. [19],[23],[77],[79][102], and [55].

e In a stochastic hypermodel, the driving noise e; 1 is assumed to be a
white random vector, with known covariance matrix. In the present
thesis, we will mainly utilize stochastic hypermodels.

The equation (1.2) for y;

yr = g Hoy + v

will constitute an output equation for the state space model (1.7). Thus,
the parameter estimation problem can be formulated as a state estimation
problem. Model-based tracking of state variables has been studied and
utilized for decades, in e.g. radar applications [31]. If the matrices in (1.7)
and the covariance matrices of e;4; and vy are known, then the Kalman

filter [62]

Ty = Foy_qp-1 + Mmy—q + K] (y: — O haji—1) (1.8)
Bt+1|t = HFi"t|t

can be utilized to minimize the mean square tracking error. The time-
varying gain matrix K{ of the Kalman filter is obtained from a Riccati
difference equation, which is iterated forward in time. (See Section 2.3 for
details.) Based on the estimator (1.8), predictors, fixed lag smoothers and
fixed interval smoothers can be obtained [7],[58],[93]. Kalman estimators
can be designed also for time-varying hypermodels.

The Kalman algorithm will constitute the linear estimator which provides
the minimal mean square tracking error, in the case of exactly known hyper-
models. Its performance will thus constitute the ultimate attainable bound
on the performance of estimators with linear structure?. Note that the
structure of (1.8) will, in general, differ from that of (1.6). The structure of
algorithms of the type (1.6) will therefore rarely be optimal.

For further reference, let us mention that the hypermodel (1.7), with m; = 0,
may be expressed in transfer function form

*When the driving noise e; consists of a random spike sequence, its covariance matrix
will be time-varying in an unknown way. Nonlinear schemes can then attain a better
performance than a Kalman estimator based on some average covariance matrix. A simple
example of such a scheme would be the use of change detection based on the magnitude
of the error e = y: — i hyj:—1. The detection of a large error could be used to increase
the gain of the observer (1.8). This would speed up the transient response when there
is a sudden change in e.g. the slope of a linear trend. Schemes for change detection are
discussed in e.g. [8]. Such devices will, however, not be utilized in the present thesis.
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ht = ’H(qil)et 5 (19)

where

H(gH)=HI-q¢ 'F)'G

is a rational matrix with transfer operators in the backward shift operator
¢! as elements. The poles of the transfer functions will be assumed to be
inside or on the stability limit. We will also express hypermodels as linear
difference equations, either in the form

D(q " )he = C(q Ve (1.10)

or as
hi =F (g Hh1+C(g Ve (1.11)

where D(q™1), C(¢~!) and F(g~!) are polynomials matrices in ¢~!. By
comparing the model structures (1.10) and (1.11), it is evident that

D(g ') =1-F(q ')

An assumption that the parameters are either constant or can be described
as integrated white noises leads to a special case of particular interest,
namely the random walk model. In the formulation (1.11), the random
walk model corresponds to the use of F(¢~!) = C(¢~!) =1, or

ht = ht_1 + e . (1.12)

Thus, the use of hypermodels of the parameters, and of Kalman estimation
based on these models, constitutes a powerful methodology for the design of
tracking algorithms. However, the basic premises of such an approach can,
and should, be evaluated critically. The points raised by such a discussion
motivate the directions of research, pursued in the present thesis.

1. Is an introduction of hypermodels sensible at all?

If the parameters to be tracked are themselves unknown, can we then really
postulate the existence of known dynamic models for their behavior? Will
this not make the performance of the resulting algorithm sensitive to errors
in the assumed dynamics?

We will argue that the selection of an algorithm structure, such as (1.6)
will, in itself, entail an implicit assumption about the underlying parameter
dynamics for which that particular algorithm is optimal. It can certainly be
claimed that the use of a method that motivates the designer to formulate
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such assumptions in an explicit way will be a more rational approach. The
question of sensitivity to underlying assumptions is not coupled to the ex-
plicitness of the assumptions. The fact that assumptions are not formulated
explicitly does not necessarily imply that the performance of a resulting al-
gorithm would be insensitive to changes in the dynamics of h;.

If parameters evolve essentially as random walks (1.12), then there will be
little reason to go beyond algorithms with the structure (1.6). Situations
where the dynamics differs from random walk are, however, more of a rule
than an exception. Knowledge of at least the relative magnitudes and the
dominating frequency contents or time constants of the parameters will of-
ten be available in particular applications.

Sensitivity will in general not be a critical issue. The crucial aspect of any
algorithm based on hypermodels is that an appropriate amount of inertia
should be built into the adaptation law. The exact correctness of the hy-
permodel utilized for the design will mostly not be critical. If very little is
known about the dynamics of the time variations, then the present work
suggests the use of algorithms based not on random walk models, but on
integrated random walk models, as the reasonable first guess.

A systematic design methodology should, however, take into account the
fact that hypermodels are rarely exactly known. In Chapter 3, and also in
the coming thesis [140] by Ohrn, methods will be presented for the robust
design of tracking algorithms, based on sets of possible models (1.7). The
aim is to obtain a minimal MSE tracking error, on average over these sets.

2. Does not the use of hypermodeling increase the difficulty and
the complexity of the design of adaptive algorithms?

This criticism can certainly be true, if the search for good hypermodels is
driven to an extreme. In the present thesis, the use of simple models, which
describe the main “first order” dynamic properties of the time-varying pa-
rameters, will be emphasized.

Hypermodels can sometimes be parameterized by a few physically relevant
parameters, which can themselves be estimated from data. The case study of
Chapter 8 will discuss such an example. When investigating ways to reduce
the design complexity, the use of self-tuning hypermodels is therefore an
interesting topic for research.
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3. Will Kalman-based tracking imply a high computational load?

The use of Kalman schemes requires a covariance matrix of dimension x; to
be updated by a Riccati equation at each time step. Smoothing estimators
require further calculations. The computational complexity grows with the
complexity of the hypermodels. If the dimension of the state vector x; is
higher than that of the parameter vector h;, then the complexity will be
higher than that of RLS. Complexity will be a valid, and indeed crucial,
argument against the use of Kalman-based adaptation schemes in many
high-speed applications. The work on algorithm design in the present the-
sis will therefore be focused on hypermodel-based algorithms which avoid
the need for updating a Riccati equation at each time instant.

Before outlining the contents of the thesis, let us first briefly mention some
alternative approaches to the design of tracking algorithms.

The methodology which is conceptually most closely related to the one
to be presented below has been developed by Benveniste and co-workers
[10],[11],[12]. Their approach to design and analysis is based on ODE av-
eraging, and it is therefore restricted to situations with slow parameter
variations. The method is based on exactly known continuous-time hyper-
models. A continuous-time algebraic Riccati equation is utilized to optimize
the design of one-step prediction trackers. The resulting adaptation laws
are in state-space form and have constant gains. Smoothing and robust
design is not considered.

If the parameters evolve as random walks (1.12), then the optimal one-
step prediction estimate equals the filter estimate, iLH_l‘t = ilt|t. When the
parameter dynamics deviates from random walks, the use of stable rational
coefficient prediction filters

Bt+1|t = 'P(q_l)ilt\t

in (1.6) can improve the tracking performance. The use of such filters was
introduced and discussed by Kubin [64],[65], but no systematic methodol-
ogy for the filter design was proposed. The application of the results of
this thesis to the design of coefficient prediction filters will be discussed in
Chapter 3.

In [19], Clark has suggested the use of ”fading-memory prediction”, which
corresponds to the use of hypermodels with linear trend or integrated ran-
dom walk dynamics (two integrators for each parameter). The approach by
Clark will be discussed in Example 3.8. It can be seen as a special case of
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the methodology developed in Chapter 3.

In [78], Lin and co-workers present a systematic methodology for optimizing
the time window w, of the criterion (1.4). It is, at present, unclear if this
optimization could be implemented in recursive form.

1.2 Outline of the Thesis

The thesis will consider the design of tracking algorithms in Chapter 2 and 3,
the analysis of algorithms in Chapter 4 and 5 and the application to mobile
radio communications in the Chapters 6, 7 and 8.

In Chapter 2, the linear regression model, the tracking problem and the
structure of hypermodels expressed in observer state space form, will be dis-
cussed in some detail. Kalman estimators are then reviewed in Section 2.3.
The main contribution of Chapter 2 is a reformulation in input-output form
of Kalman filter and prediction tracking estimators. Such estimators can,
for scalar y;, be expressed as

& = yt_ﬁp;:kilt\tfl
ht+k|t = F(q_l)hﬂ-k—l\t—l+G§(q_1)<ﬂtf‘3t ; k>0 . (1.13)

The fixed polynomial matrix feedback filter F(q~') is related directly to
the hypermodel (1.11). The time-varying polynomial matrix G¥(¢ 1) is de-
noted the gain filter. It is determined indirectly by the hypermodel, via the
Riccati equation. The expression (1.13) represents a general hypermodel-
based tracking algorithm with time-varying gain G¥(¢~!). The RLS and
the normalized LMS algorithms will in Section 2.4 be considered as special
cases of this algorithm structure.

In Chapter 3, a class of algorithms, with structure inspired by (1.13), but
with time-invariant and possibly rational gain filter

_ *7
& = yt_SDtht\t—l

hesre = F@Dhpsro1m1 + Gl HDeeer (1.14)

is introduced. The feedback filter F'(g~!) is obtained from the hypermodel
(1.11), while the selection of the gain filter Gr(¢ ') will differ in different
special cases. The fixed integer k determines if filtering (k = 0), prediction
(k > 0) or fixed lag smoothing (k < 0) estimates are to be processed. The
motivation for introducing such adaptive algorithms with time-invariant
gain, is that the need for elaborate calculations at each time step, such as
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the iteration of Riccati equations, is thus eliminated. The price is some
performance loss, as compared to the use of an optimally tuned algorithm
with structure (1.13). In many situations, the loss will be negligible. The
LMS algorithm, momentum LMS, LMS with leakage and different previous
suggestions for introducing filtering into LMS update laws can all be seen
as special cases of the algorithm structure (1.14).

The question now naturally arises if the gain filter can be designed to mini-
mize the mean square parameter tracking error, for a given hypermodel, or
for a set of possible hypermodels. In Chapter 3, such design problems will be
expressed in terms of approximately equivalent Wiener filtering problems.
These (robust) Wiener design problems are then solved by utilizing the poly-
nomial equations approach, pioneered by Kucera [66], [67], and developed
for filter design problems by Ahlén and Sternad [1],[2],[4],[119],[120],[139]
and by Grimble [45]. See also the books [3] and [45].

The reformulation of tracking algorithm optimization as linear filter design
can be outlined as follows. Assume the regressors to have zero means, and
to have a given time-invariant autocorrelation matrix

A
R = Epy;

If unknown, this matrix will have to be estimated recursively. Introduce the
autocorrelation matrix noise [39] as

A
Zy = pp; — R, (1.15)
and introduce a fictitious measurement signal
A
Jt = Rhu+me (1.16)
where n; is called the gradient noise, and is given by
A ~
Nt = Zihye 1+ prvg - (1.17)

The algorithm (1.14), can now be expressed as linear filtering of the signal
ft, see Figure 1.6. The signal f; can be generated from measurements of y;.
Note that 7, which plays the role of a disturbance, consists of two terms:
a vector v related to the noise vy and the term

Ztilt|t—1 )

which henceforth will be referred to as the feedback noise.
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Figure 1.6: A multivariable estimation problem. The parameter vector h; is ro-
tated by the input correlation matrix R and distored by gradient noise ;. The
estimator may constitute a filter (k = 0), a predictor (k > 0) or a fixed lag
smoother(k < 0). The parameter vector is to be estimated from the fictitious
measurement signal f;, so that the covariance matrix of the estimation error Bt+k|t
is minimized.
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The effect of ﬁt|t,1 on 7 constitutes a time-varying feedback loop within the
algorithm. The approximation made, to reduce the design problem to an
open loop filtering problem, is to assume that the correlation between r; and
ilt|t_1 is negligible. The assumption of near uncorrelatedness is evaluated
and investigated in more detail in Chapter 4. Under that assumption, we
directly obtain a systematic design methodology, which in the general case
consists of solving a polynomial matrix spectral factorization and a bilateral
Diophantine equation iteratively. The result is a stable and rational linear
time-invariant estimator of the form

Bt+k|t = Lk(q_l)ft ) (1.18)

from which a corresponding gain filter Gy(¢~') in (1.14) can be obtained.
The solution minimizes the parameter tracking error covariance matrix. If
the regression matrix and the tracking error ﬁt‘t_l are assumed indepen-
dent, then the excess MSE E|e;|2 — E|v|? can also be minimized.

Different assumptions on the structure of the hypermodel H(¢™!) in (1.9)
and on the properties of 7; in (1.17) will result in different levels of complex-
ity in the design equations and in the resulting algorithm. The following
cases deserve to be mentioned.

1. If no restrictions are placed on H(¢~') and if the gradient noise n; may
be colored, then the gain filter will be a rational matrix. A polynomial
matrix spectral factorization and bilateral Diophantine equation will
then, in general, have to be solved to optimize the tracking scheme.
This general solution is presented in Section 3.4.1.

2. If H(qg™!) is general, while 7, is assumed to be white, then Gi(q™!)
will be a polynomial matrix. In this case, no Diophantine equation
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needs to be solved. An algebraic Riccati equation will determine the
optimal estimator, see Section 3.4.5.

. To further reduce the complexity of the algorithm, the optimization

can be performed under the constraint that
herwe =8 R f

where S(¢~1) is a diagonal rational matrix. The design equations will
then consist of uncoupled sets of scalar spectral factorizations and
polynomial Diophantine equations, one for each parameter. If the ele-
ments of the parameter vector h; are uncorrelated® and if the elements
of 7 are uncorrelated but possibly colored, then this constrained op-
timal algorithm will attain the unconstrained minimum of the mean
square tracking error for constant gain algorithms. In other situations,
some performance will be lost. This type of algorithm, presented in
Section 3.6.1, will be denoted Generalized Wiener LMS (GWLMS).

. We may assume that the elements of the parameter vector h; are

uncorrelated but have the same dynamics,

4y _ Gl
Ha) = oy T (1.19)
and also assume that r; is white. The optimal gain filter will then
reduce to Gr(¢™') = Qr(¢" )R !, where Qx(¢7!) is a polynomial. The
design equations will consist of a single polynomial spectral factoriza-
tion. No Diophantine equations are required. The resulting algorithm,
presented in Section 3.6.2, will be called Wiener LMS (WLMS).

. If it is assumed that the elements of the true parameter vector are

uncorrelated but have the same second order autoregressive dynamics,

1 1
H(g™) = I = I 1.20
@) D(¢™) 14+dig ' +dag2 (1.20)

and if 7; is white, then no design equations at all will be required. The
optimal algorithm, presented in Section 3.6.3, is obtained immediately
and it will be called Simplified Wiener LMS (SWLMS).

In all of the above cases, F (¢~!) from the hypermodel (1.11) is used in
(1.14). The algorithms based on case (3),(4), and (5) above can all be seen
as generalizations of LMS, with various complexity and structure of the de-
sign equations. It should be noted that the designs (3),(4) and (5) neglect

31f the dynamics is stable, then such models of communications channels are also

known as wide sense stationary uncorrelated scattering models [78].
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possible correlations among the parameters. On the other hand, the result-
ing algorithms require a small number of computations at each time step.
If the regressor covariance matrix R is known, then the number of required
multiplications will grow linearly with the dimension of the parameter vec-
tor.

If the parameters are known to be significantly mutually correlated, and
if n; is colored, then the general design (1) provides the highest tracking
performance. Any of the other alternatives can, of course, be utilized, re-
gardless of what is known about the nature of the parameter variations. If
a mismatching structure is deliberately chosen, the user will be aware of
what kind of approximation it corresponds to.

Due to the presence of the tracking error in (1.17), the properties of the
disturbance 7; will actually depend on the tracking algorithm itself. The
optimization problem will therefore have to be solved iteratively. An itera-
tive algorithm for the general case (1) above is presented in Section 3.4.3.
A simpler algorithm for case (2) (white 7;) is presented in Section 4.4.2.
The simplified designs (4),(5) do instead include a scalar gain parameter,
which has to be tuned.

Readers familiar with the polynomial approach to Wiener filtering will have
noted the absence of Diophantine design equations in the cases above based
on white gradient noise ;. This simplification has been made possible by
the derivation of explicit closed-form solutions to the required equations.

All of the above algorithms can be made robust with respect to uncertain-
ties in the hypermodel, by averaging over a set of possible models. The
methodology for robust design is outlined in Section 3.5, and it is exempli-
fied in the case study of Chapter 8.

In Chapter 4, the properties of the family of algorithms represented by
(1.14) is analyzed. Both stability and performance is considered. The anal-
ysis considers both slow and rapid time-variations.

Expressions for the tracking error are first derived. The importance of hy-
permodels which contain integration is pointed out. The use of integrating
models (1.11) will introduce integration into the adaptation law (1.14). This
presence of integration is a necessary condition for the bias-free estimation
of time-invariant parameters.

A correspondence is then established between the concept of slow time vari-
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ations and that of a negligible impact of the feedback noise Ztﬁt|t—1 on the
tracking error covariance matrix

A i 3
Py = Mm Ehyypihig, - (1.21)

The analysis of the performance of algorithms with the structure (1.13) and
(1.14) becomes straightforward if the feedback noise can be neglected. This
opens up a novel, simple and direct route to the analysis of adaptive algo-
rithms in the case of slowly time-varying parameters.

The performance of the RLS algorithm and the Kalman algorithm can, for
example, be evaluated in a straightforward way. The performance of the
RLS and of the Kalman algorithm, when applied to slowly varying param-
eters with random walk behavior is discussed in Sections 4.3.2 and 4.3.3,
respectively. The results are expressions for the mean square tracking error,
that are obtained by direct and simple calculations. Analysis of Kalman-
based algorithms has, until now, required the use of powerful tools like
averaging or weak convergence theory. See e.g. [49].

It must be emphasized here that the design methodology developed in Sec-
tion 3 is not based on an assumption of negligible feedback noise, i.e of
slow time variations. Instead, it is based on the assumption that the dis-
turbance n; in (1.17) is only weakly correlated to the tracking error 71,5|t_1.
This is a much weaker condition. It will, of course, be fulfilled in the case of
slow time-variations, since the whole feedback noise vector Zt;lt\t_1 in (1.17)
can then be neglected.

When the feedback noise cannot be disregarded, which corresponds to fast
time-variations, the analysis becomes more difficult. Two particular types
of problems with fast time-varying parameters are considered in Section 4.4:

e Linear regression models (1.1) with independent consecutive regres-
sion vectors containing circular Gaussian data

o FIR systems with zero mean stationary white inputs.

The second case is the most important one from a practical point of view.
To conduct the analysis in this case, it will be assumed that Z;Z}, cf (1.15),
is almost independent of }Nlt\t—l iNz:|s_1. Under this assumption, approximate
expressions for the steady state mean square error are obtained. The fourth
order moments of the input will affect the performance. It turns out that
the kurtosis of the input w; affects the tracking performance significantly.
It is concluded that input data with large kurtosis result in larger track-

ing errors than input data with a smaller value of the kurtosis. Thus, the



1.2. Outline of the Thesis 31

use of binary input signals to a FIR model will result in a better tracking
performance than the use of Gaussian inputs. The impact of the kurtosis
has also been noted in the works [38] and [39] by Gardner. The tracking
performance does furthermore seem to be more sensitive to the choice of
step-size for input signals with a large kurtosis.

Finally, in Section 4.4 we will address the question if there is any hope of
attaining an exact performance analysis, without approximations, for fast
time-varying parameters, i.e. for a non-negligible feedback noise. In most
circumstances, the problem will then become so difficult that an exact anal-
ysis seems to be out of the question. However, it is conjectured that an
exact analysis is possible for the WLMS algorithm applied to FIR systems
with scalar output and white circular complex-valued inputs with zero mean
and constant modulus.

It is proven in Result 4.3 that an exact analysis is indeed possible for second
order FIR models (1.5) with circular, white and zero mean input data with
constant modulus. By a fortunate coincidence, these rather special condi-
tions happen to be fulfilled in the channel estimation problem introduced
in Example 1.1 and studied in detail in Chapter 8. Thus, the MSE per-
formance of WLMS-type channel estimators can in Chapter 8 be described
exactly by analytical expressions.

In Chapter 5, the analysis is specialized to the LMS algorithm, which
is the most widely utilized and analyzed of all tracking algorithms. The
input-output polynomial approach introduced in Chapter 3 provides a new
approach to the analysis of LMS adaptation laws. As a result, many well-
known properties of the LMS algorithms can be derived in a very simple
way. Several new results, such as improved conditions for convergence in
MSE (Result 5.3 and 5.4) and an improved expression for the optimal step-
size (Result 5.5) are also derived and discussed.

The aim of Chapters 6 to 8 is primarily to investigate the utility of the
proposed hypermodel-based framework for tracking algorithm design. Al-
though the proposed framework can potentially be utilized in many ap-
plications, Digital Communications is particularly suitable for purpose of
illustration.

In Chapter 6, passband and baseband descriptions of mobile radio channels
are introduced. A key element in the successful use of hypermodel-based
estimators is the existence of reasonably accurate a priori information on
the nature of the time-variations. Such information exists for mobile radio
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channels, in the form of models for the fading baseband channel parame-
ters. A frequently utilized model for fading channels, namely Jakes model,
is discussed.

In Chapter 7, the symbol estimation part of the adaptive equalization
problem, that was introduced in Example 1.1, will be discussed. Methods
for direct and indirect adaptation of detectors are reviewed. Motivated by
the highly time-varying nature of the channel coefficients in the case study
of Chapter 8, a time-variable transversal linear equalizer and a novel time-
variable decision feedback equalizer are derived in Section 7.3.1. A brief
discussion on the implementation aspects of these algorithms is also in-
cluded in Section 7.3.2. Finally, the adaptive implementation of the Viterbi
detector is discussed. It is noted that prediction estimates of the channel
coeflicients are required in this algorithm.

The thesis is concluded by an extensive case study in Chapter 8. The
case study involves channel estimation and equalization of a fading mobile
radio channel, originating from the D-AMPS, or IS-54 standard (Digital Ad-
vanced Mobile Phone System). This standard is presently the dominating
standard for digital mobile communications in North America, and a simi-
lar standard is used in Japan. In Chapter 8, the physical insights obtained
from Chapter 6 and the time-varying DFE derived in Chapter 7, are com-
bined with the proposed hypermodel-based tracking algorithm design from
Chapter 3. A theoretically founded comparison between hypermodel-based
designs and LMS is performed. Finally, the bit error rate and tracking error
performance of different adaptive equalization schemes are compared in a
simulation study.

We will conclude this section by illustrating how the simplest one of the
suggested fixed-gain algorithms, namely SWLMS, compares to LMS in the
channel estimation problem introduced in Example 1.1.

Example 1.2 Tracking of parameters of fading mobile radio channels in
TDMA systems, continued

In this example, we shall compare the attainable tracking performances of
the SWLMS algorithm and the LMS algorithm, in a situation where the time
variations of the parameters are known to differ substantially from random
walks. In the D-AMPS (IS 54) system, the wireless channel is subject to
fading, which can be modeled as Rayleigh fading. The channel coefficients
are rapidly time-varying. An adequate description of the wireless channel
is given by

ye = hdus + hjug 1 +vp (1.22)
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where the coefficients h and h} are subject to Rayleigh fading, u; are
QPSK modulated symbols of variance 2 and v; represents white noise and
co-channel interference. All signals in (1.22) are complex valued and sta-
tionary with zero mean. The noise/interference will be independent of the
symbols and the channel coefficients, so Assumption 1.1 will be fulfilled.

The LMS algorithm is given by

Bt—f—l\t = iLt\t—l + ppiet (1.23)

where y is the step-size. The SWLMS algorithm is, for one-step predictors,
given by

- g —d _ 1
hipre = —(dy + dag™ " hye1 + ( : T dagq 1) v (1.24)

1+do(l—p

where d; and dy are the coefficients of the polynomial
D(g™) =1+ dig " +dyg™”

in the hypermodel (1.20) and where o2 is the variance of the regressor u;.
In order to compare these algorithms, we shall regard (1.22) as the “true
system”, from which we (by simulation) obtain the received signal. To
generate the Rayleigh fading coefficients, Jakes’ model is used [56]. (For
details, see Chapter 6.) The covariance function of the channel coefficients
is then described by

E R} bt = Jo () i=0,1 (1.25)

if the coefficients both have unit variance. Here, Jy(-) is the Bessel function
of first kind and zero order, and €2 is the maximum normalized Doppler
frequency. We shall here study a case with a mobile traveling at a speed
of 100km/h. In the D-AMPS system, with a sampling period of 40us and
900 MHz carrier frequency, this corresponds approximately to Qp, = 0.02.
For the SWLMS algorithm we shall use a model of the same structure as
(1.22). We describe h; by a second order autoregressive (AR) hypermodel
with poles located close to the unit circle, at an angle related to the Doppler
frequency as Qp/ V2. The use of pole locations corresponding to resonant
modes is motivated by the quasi-periodic behavior of channel coefficients
subject to Rayleigh fading, according to Jakes’ model. (See also Figure 1.4
in Example 1.1.) The pole angle is selected so that a good fit between the
Bessel function (1.25) and the covariance function resulting from the hyper-
model is obtained.
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Thus, we select a hypermodel in transfer function form, which for 2, = 0.02
is given by

H(g™?") = mb

(1.26)
D(gY) = 1-10.9978¢ 1 +0.9980¢ 2 .

For a signal-to-noise ratio of 15dB and a normalized Doppler frequency of
Qp = 0.02, the optimized SWLMS algorithm will then be given by

. . 1
hip1)e = (1.9978 — 0.9980 q’l)hﬂt,l + (0.0942 — 0.0898 q’l)?otst . (1.27)
The LMS algorithm with step-size optimized for the above case is given by

ilt+1\t = Bt|t71 +0.1per . (1.28)

The properties of these tracking algorithms and their influence on the sym-
bol error rate when used in conjunction with a Viterbi detector in an adap-
tive equalizer, is depicted in Figure 1.7 below. In the left-hand figures, the
tracking performance is illustrated by simulations of 600 symbol times, us-
ing known transmitted symbols as regressors. It can be mentioned that the
theoretical expressions developed in Chapter 3 and Chapter 4 can exactly
predict the mean square tracking error as a function of u for known regres-
sors. These functions are depicted in the upper right-hand part of Figure 1.7.

As can be seen from the upper right-hand figure, the attainable MSE track-
ing performance is improved almost three times by the SWLMS algorithm.
The improvement of the bit error rate obtained by using the SWLMS algo-
rithm is approximately 2 times at 15dB and 7 times at 25dB. This corre-
sponds to a gain of between 3 and 5dB. We conclude that a considerable
improvement can be obtained by simple means in cases when the parameter
variations differ substantially from random walk behavior.

The reason for the improved performance can be understood by inspecting
the frequency responses of the tracking filters (1.18), shown in Figure 1.8.
The SWLMS tracking filter possesses bandpass character around the domi-
nating frequencies of the time-variations illustrated in Figure 1.4, and it has
lower gain at high frequencies.
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Figure 1.7: The result of LMS and SWLMS parameter estimation in Example 1.2.
Top and bottom left figures, estimates (solid) and the true parameter variation
(dashed). Top right, the MSE tracking performance for the LMS algorithm (dotted)
and for the SWLMS algorithm (dashed), evaluated for 15dB SNR and Qp = 0.02
(100 km/h). Bottom right, bit error rate for estimator LMS (dotted) and SWLMS
(dashed), concatenated with a Viterbi algorithm, and the bit error rate obtained
by using true channel parameters (solid).

1.3 Summary of contributions

The thesis offers a novel alternative approach to the design and the analysis
of tracking algorithms for linear regression models. The major contributions
of the work can be summarized as follows.

Design of adaptive algorithms

A design methodology has been developed for adaptation laws (1.14) with
time-invariant gains. The approach is based on solving an approximating
Wiener filter design problem by means of the polynomial equations ap-
proach. It has the following main characteristics.
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Figure 1.8: Amplitude and phase response of the learning filters in Example 1.2,
corresponding to SWLMS tracking (dashed) and to LMS tracking (dotted), as a
function of the normalized frequency 2

The designs are based on the minimization of the mean square pa-
rameter tracking error. A priori information on the dynamics of the
time-variations, in the form of linear time-invariant stochastic models
of the parameter variations, can be taken into account.

Methods for robust design based on the minimization of the mean
square tracking error, averaged over possible models of the parameter
variations, have been developed.

Filtering, prediction and fixed lag smoothing estimators can all be
designed by utilizing the same basic equations.

The methodology offers a selection of algorithms of different com-
plexity. There is a direct connection between the complexity of the
assumed hypermodel and the complexity of the resulting algorithm.
Simpler models result in simpler design equations and in tracking al-
gorithms with a lower computational complexity.

If the present work is compared to the work by Kubin [64],[65] on the use
of coefficient prediction filters, it can be said to offer a methodology for the
systematic design of coefficient prediction filters.

The work by Benveniste and co-workers [10],[11],[12] was also aimed at
the use of hypermodels in the design of adaptation algorithms with time-
invariant gains. Compared to that approach, the methodology presented
here can be claimed to be simpler to use. It also provides algorithms with
lower complexity, provides for robust design and it is not restricted to situ-
ations with slowly time-varying parameters.
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New theory for polynomial systems design

The design methodology is based on the polynomial systems framework to
multivariable Wiener filtering. It provides a new theory for approaching
the design of adaptive algorithms within this framework. The thesis also
includes two types of results of general interest, related to the design of
Wiener filters.

e The existence of closed-form solutions to bilateral Diophantine equa-
tions for filtering problems with white noise (Lemma 3.2)

e A recursion in the prediction length k for obtaining estimators for
different prediction horizons and smoothing lags (Corollary 3.1). Es-
timators for differing values of k are then obtained directly, without
any need to re-solve Diophantine design equations.

Furthermore, a way to obtain the polynomial matrix spectral factor from an
algebraic Riccati equation in the white noise case is presented as Result 3.3.

Analysis of adaptive algorithms

The algorithm structures (1.13) and (1.14) may provide a unifying frame-
work for the understanding and the analysis of a large number of existing
and novel algorithms.

A novel approach to the analysis of adaptation laws for linear regression
models with slowly time-varying parameters is presented. It is based on
the concept that slow time variations correspond to a negligible feedback
noise Z¢hy;—1 in (1.17). This principle has been applied to the analysis of
LMS, RLS, Kalman, algorithms and to algorithms with the general structure
(1.14). Analysis based on assumptions of slowly time-varying parameters
has had a long history, see e.g. [12] and [69]. The approach presented here
simplifies this type of analysis significantly.

It is also explained why the quite restrictive assumption of independent con-
secutive regression vectors can lead to results which provide reasonable pre-
dictions on the behavior of adaptive algorithms. This assumption has been
a standard tool in the analysis of LMS algorithms [32],[39],[53], [133],[136].
In the present framework, an assumption of independent consecutive regres-
sion vectors corresponds to an assumption of white feedback noise, and to
independence between Z; and the parameter estimation error fzt|t,1.

An approximate analysis is also performed in Chapter 4 and 5 for situations
with fast time-variations, i.e for situations where the feedback noise cannot
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be neglected. The analysis is mainly performed for scalar FIR systems with
white inputs of zero means.

Digital Communications

In Chapter 7, a MSE-optimal decision feedback equalizer has been derived
for an exactly known time-varying FIR channels, under the assumption of
correct past decisions.

In Chapter 8, a rather detailed case study is performed on channel tracking
and adaptive equalization for the North American digital mobile radio stan-
dard IS-54. It is concluded that the methodology developed in the present
thesis can in that application provide adaptive equalizers with both high
performance and a low computational complexity.



