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and performance of these predictors depend heavily on the correlation properties
of the channel. Models for a channel where the multipath is caused by clusters of
scatterers are studied. The correlation for the contribution from a cluster can be
approximated as a damped complex sinusoid. A suitable model for the dynamics
of the channel is an ARMA-process. This motivates the use of linear predictors.
A limiting factor in the prediction is the estimation errors on the observed channels.
This estimation error, caused by measurement noise and time variations, is ana-
lyzed for a block based least squares algorithm which operates on a Jakes channel
model. Efficient noise reduction on the estimated channel impulse responses can be
obtained with Wiener-smoothers that are based on simple models for the dynamics
of the channel combined with estimates of the variance of the estimation error.
Power prediction that is based on the squared magnitude of the linear prediction
of the taps will be biased. Hence, a bias compensated power predictor is proposed
and the optimal prediction coefficients are derived for the Rayleigh fading channel.
The corresponding probability density functions for the predicted power are also
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measured broadband mobile radio channels. The performance is highly dependent
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Chapter 1

Introduction

Radio communication has been mobile since the dawn of this technology.
Soon after the early work of Marconi, transmitting Morse signals wirelessly
across the Atlantic ocean in 1901, most large ships were equipped with a
radio telegraph. Technical advances in this field have promptly been adopted
by the public. In the last twenty years mobile radio communication has
become a consumer product. In some areas the cellular phones are even
more common than phones connected to the fixed net.

The first generation of cellular phones were portable analog radio trans-
ceivers, used as ordinary phones. The second generation was digital, e.g.
GSM and D-AMPS. Cellular phones are still mainly used for oral communi-
cation. However, the extensive use of text messages, such as SMS, indicates
that people are interested in using their mobile phones as information ter-
minals. The modern digital radio technology is actually a step back to the
digital transmission pioneered by Marconi. In those days, the information
was coded as Morse signals, now it is transmitted by digitally modulated
symbols. The data rates have however increased dramatically.

The challenge for the third and fourth generation of mobile radio systems
is no longer to transmit a conversation between two parties, but rather
to transmit large quantities of data. The public has become used to fast
Internet access and the aim is to provide that service for mobile users too.
The radio frequencies used by mobile radio systems have become a scarce
resource. To satisfy a growing number of users with increasing demands
on the data rates, we need to come up with mobile communication systems
that send more bits faster within a given bandwidth. This means that the
quest is for higher spectral efficiency.

1



2 Chapter 1: Introduction

1.1 The problem

One of the main problems in mobile radio communication is the rapid varia-
tion (fading) of the signal power at the receiver. This variation in receiving
conditions can however be turned into an advantage. In a multiuser system,
different users will experience different time-varying receiving conditions.
Which user that has the most favorable receiving condition at a given time
will vary, due to the fading. If the receiving conditions for the users are
known in advance, then adaptive resource allocation can be used to sched-
ule the use of the radio resource between the users [1], [2], [3]. The multiuser
diversity is exploited, which leads to better utilization of the available radio
resources.

Another tool, that can be combined with the scheduling, is link adapta-
tion. Coding, modulation and/or transmit power are then adjusted to the
current receiving conditions to exploit the full capacity of the radio link [4],
[5], [6], [7], [8].

Both these schemes require that the receiving conditions, that is the
channel states, for the users are known in advance at the transmitter. Pre-
diction of the channel states thus constitutes a crucial component for the
adaptive schemes. This thesis is devoted to the problem of predicting the
mobile radio channel.

Fading

The mobile radio channel is the transfer function between sender and trans-
mitter. The situation in mobile radio transmission is quite similar to what
you experience when you hear an echo. Someone (the transmitter) is shout-
ing HELLO and after a while you (the receiver) hear HELLO and then
finally HELLO. The sound has traveled in a direct path, and then there are
a number of reflections (echoes) resulting in delayed and damped versions
of the signal. In the same manner the radio waves are reflected, scattered,
damped and delayed by objects in the environment, resulting in a multipath
channel [9]. When the transceiver moves, the delays and dampings change,
as the distance to the reflectors is altered.

The radio transmitter uses a carrier radio frequency and then modulates
the signal on this carrier. During the transmission, radio waves with this
frequency are transmitted continuously. Radio waves traveling along dif-
ferent paths will interact and form a wave pattern, causing the small scale
fading. The situation is not that different from the one experienced in a
microwave oven when defrosting a frozen lasagna. The microwaves bounce
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around in the oven and form a wave pattern. Wherever there is constructive
interference, the lasagna will be hot, and where there is destructive inter-
ference it will remain frozen. The frozen lasagna corresponds to locations
in the environment with low received signal power for the receiver, that is,
a fading dip. When the mobile transceiver moves through the wave pattern
it will encounter alternating fading dips and nodes. The fading is thus a
spatial phenomenon that depends on the position of the transceiver in rela-
tion to the contributing reflectors/scatterers. Figure 1.1 illustrates a fading
pattern for a single carrier at 2 GHz. There is also a temporal aspect, as
the reflectors might move, but this is generally a much slower process than
the fading due to the movement of the transceiver.

Figure 1.1: Example of a fading pattern for a single carrier with frequency
2 GHz. The multipath propagation environment consists of 50 reflections
creating waves arriving from random directions. An area of 0.75×0.75 m is
shown. Moving the transceiver just a few centimeters can result in a drop
of the power with over 30 dB.

Prediction

The time varying mobile radio channel can be estimated from the received
data to obtain snapshots of the impulse response of the channel. Consecutive
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snapshots give the history of the channel variation. These observations are
then used to form a prediction of the future channel impulse response.

There are a number of scales involved in this problem. Even though the
channel change on a fraction of a wavelength the environment causing the
multipath remains more or less constant for several meters. A model for the
radio environment, thus change on a longer scale than the impulse response
of the channel. It is possible to exploit this difference in scales to design
predictors that function for a large portion of a wavelength.

Fast link adaption requires quite accurate prediction over relatively short
prediction ranges, Adaptive resource allocation needs predictions of at least
a quarter of a wavelength or more, depending on the velocities of the users.
The requirement on the prediction quality is however not that strict in
resource allocation problems over these longer ranges.

1.2 Summary of Results and Insights

Channel model

The taps of a broadband mobile radio channel can be modeled as time-
varying ARMA or AR-process. The time variability has two components, a
slow change due to the changing angles and distances to the reflectors and
scatterers and a more abrupt change due to the birth and death process
of the reflectors/scatterers. When there are no dominating close scatterers
or abrupt changes, the models can be approximated as time invariant for
several meters.

Channel estimation

In a broadband communication system the data rate is much faster than the
fading rate. The received symbols can be used to obtain frequent snapshots
(estimates) of the channel impulse response. These snapshots are obtained
at a channel sampling rate that potentially is much faster than the rate of
the fading. There are on the order of tens to hundreds of snapshots of the
channel for a traveled distance corresponding to a wavelength.

Noise reduction

Simple models for the dynamics of the taps of the impulse response, at the
channel sampling rate, together with estimates of the Doppler frequency
and estimation error variance can be used to design Wiener-smoothers for
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the estimated taps. The application of these smoothers to the time series of
estimated impulse responses reduces the amount of estimation error on the
impulse responses.

Sub-sampled predictors

The tap predictors rely on better models of the dynamics than what is
necessary for the noise reduction. The number of predictor coefficients has
to be kept low to avoid over fitting of the estimated coefficients, as the
amount of data that is stationary will be limited. To be able to obtain
reasonable models for the dynamics, utilizing few coefficients, sub-sampled
predictors have to be used. Sub-sampling factors on the order of a tenth of
a wavelength are found to be sufficient. The sub-sampling can be applied
as the noise reduction acts as an anti-aliasing filter.

Direct and indirect predictors

Both direct FIR-predictors and Kalman predictors based on AR and ARMA-
models for the complex dynamics of the taps are evaluated. In the Kalman
predictor the noise model is designed to give a robust performance of the
predictor. The correlation between the taps could be exploited but at the
cost of extra complexity and a higher number of estimated coefficients.

Power prediction

To obtain power prediction of the individual taps the squared magnitude of
the predictions of the complex valued taps with an added compensation for
the bias is used. This power predictor using complex valued regressors, is
a quadratic predictor with structural constraints. The coefficients that are
MSE optimal for the prediction of a Rayleigh fading tap are shown to be
MSE optimal for the proposed unbiased quadratic predictor. The prediction
of the total power of the channel is obtained as the sum of the contributions
of the taps.

The performance of the predictors on measured impulse responses are
seen to be highly dependent on the tap-to-estimation error ratio. The
dynamics of the individual taps are also of importance. Taps with lower
Doppler spread are generally easier to predict.
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Good practice

We have found that the following factors are essential for good prediction:

• The signal power changes abruptly around fading dips, while the chan-
nel taps vary smoothly. This is reflected in the different correlation
properties of the power and the complex channel. Power prediction
based on power is therefore inferior to power prediction based on pre-
diction of the individual complex taps.

• The estimation error on the observed channels limits the performance
of the predictors. In highly oversampled channels, it is worth while to
filter the data to reduce noise.

• Linear predictors have good generalization properties beyond the data
set used for estimating the prediction coefficients.

• Good prediction performance depends on accurate modeling of the
fading statistics.

• Direct FIR-predictors or model based Kalman predictors using AR
or ARMA models give reasonable performance for prediction of the
complex taps.

Scales involved

There are four scales involved in the prediction of the channel:

• The channel sampling, where the snapshots of the channel are esti-
mated from the sampled baseband signal. Data collected from a dis-
tance corresponding to a small fraction of a wavelength is used for the
channel estimation.

• A separate noise reduction step is performed on the estimated chan-
nels. The smoothers use models for the dynamics at the channel sam-
pling rate.

• The prediction is performed at sub-sampled channel sampling rate.
The models for the dynamics and the predictors have delay spacings
on the order of a tenth of a wavelength.

• The observed noise reduced channel impulse responses are used to
estimate the sub-sampled models for the dynamics of the channel, or
the predictor coefficients directly. The estimation interval is on the
order of meters.
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It is the span from the fast baseband sampling rate to the slow change of
the models for the dynamics of the channels that is exploited to obtain the
channel prediction.

1.3 Outline of the Thesis

1.3.1 Channel models

Chapter 2 gives a review of common channel models and also presents some
new results concerning the channel correlation function due to reflections
from clusters.

A statistical model

A common approach to describe the channel is to assume that the transmit-
ted radio waves, causing the interference pattern, act as plane wave fronts
from different directions, due to the multipath propagation. A statistical
description of such mobile radio channels has been developed by Clarke [10]
and Jakes [11]. The properties of the channel is deduced from a scatter-
ing propagation model which assumes that the field incident to the receiver
antenna is composed of an infinite number of randomly phased azimuthal
plane waves of arbitrary azimuthal angles. The dynamics of the channel
described by the Jakes model is bandlimited. This channel model will be
used as a benchmark channel throughout the thesis.

Plane or spherical waves

When the plane wave assumption is valid and the transceiver moves with
constant velocity the contribution to the channel from each wave front can
be modeled as a complex sinusoid. This is an approximation with limited
validity, as we will see in Chapter 2.

The plane wave approximation presuppose that the distance to the source
of the waves is long. For scattered waves or waves the are diffracted around
corners, spherical or cylindrical waves are more accurate approximations. In
Section 2.3 we study how these effects limit the use of the sinusoidal model
for the time variation of the channel. This limitation is however only rel-
evant when large contributions to the received power come from scatterers
that are close to the transceiver.
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Cluster of scatterers

In Section 2.4, we make use of the plane wave approximation but investigate
what happens if the assumed reflectors are best described as a cluster of
reflectors or scatterers. This is an approach common when channel models
for antenna array systems are studied [12], [13]. As buildings generally are
not perfectly flat reflecting objects, and the wavelength used for transmission
is on the order of the size of a brick, most buildings actually would act
more as a cluster of scatterers than a perfect reflector. The geometrical
distribution of these clusters are mapped to angular distributions of power
around the antenna of the transceiver. For distant clusters, seen under a
small angle, an analytical expression for the resulting channel correlation is
derived. The contribution to the channel from each cluster can be modeled as
a damped (not necessarily exponentially damped) complex sinusoid. These
results motivate the use of ARMA-models for the dynamics of the channel.
Each tap in the impulse response is then modeled as an ARMA-process
that is correlated with the other taps. The poles of the ARMA-model are
generally close to the unit circle which implies that the AR-part dominates
the behavior. Then an AR-process is an acceptable approximation of the
ARMA-process.

The effect on the channel from a building is thus more accurately de-
scribed by a narrowband filtered Gaussian noise than by a single sinusoid if
the assumed reflector actually constitutes a cluster of scatterers. This will
limit the performance of any channel predictor, and it tends to favor linear
predictors of the complex channel impulse responses.

1.3.2 Estimation errors and noise reduction

Estimation errors in a noisy and time-varying environment

One of the limiting factors in prediction of mobile radio channels is the
estimation error on the observed impulse responses. In a broadband com-
munication system, the symbol rate will be very high as compared to the
the fading rate. Over a block of symbols the channel can be approximated
as time invariant. In Chapter 4, least squares block based estimation of the
channel using received symbols is discussed. The effect of the measurement
noise is seen to cause an error floor in the estimated impulse responses. The
time variation of the channel during the estimation interval is also seen to
add to the estimation error. In Section 4.3 this error is analyzed for a Jakes
channel estimated by least squares. The estimation error of block based LS
estimation of the channel is seen to consist of three independent compo-
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nents [14]: The contribution from the measurement noise, an excess error
due to the weighted averaging of the time varying channel and a bias error
previously discussed by Lindskog in [15] due to the curvature of the channel.
When the estimation interval is only a fraction of a wavelength the excess
and bias errors will be small.

Noise reduction of estimated channels

As the symbol rate is very high in a broadband communication system, the
channel can be re-estimated quite often in relation to the time constants for
the variation of the channel. The channel can thus be oversampled. This
can be exploited to reduce the estimation error of the observed impulse re-
sponses. It is well known that filtering of the estimated impulse responses,
cutting away the frequency content outside the bandlimits given by the max-
imum Doppler frequency, results in improved channel estimates [16], [17]. In
Chapter 5 it is proposed to use IIR and FIR Wiener smoothers based on
simple models for the dynamics of the taps together with estimates of the
variance of the noise. The Wiener smoother minimizes the smoothing MSE
and is thus the preferred solution.

Use of a bank of smoothers to minimize estimation delays

The smoothing lag introduced by the noise reduction operation introduces
a corresponding delay when the smoothed taps are used in the regressors
for prediction of future values. The predictor has to compensate for the
delay by a longer prediction range. We thus want the smoothing-lag to be
small. But as a larger smoothing-lag also results in better noise reduction,
we also want to use as large smoothing-lags as possible. To circumvent this
problem, a bank of noise reduction smoothers with smoothing lags from zero
up to as long as needed, can be used. The regressors containing smoothed
observations has to be available without delay. Under this condition, each
element of the regression vector consists of the smoothed observation with
an as large a smoothing-lag as possible.

1.3.3 Prediction of the complex taps

Sinusoidal and statistical models of fading channel coefficients

Given that the taps of the channel act as a sum of sinusoids, then the phase
shift and attenuation of each path can be estimated. A prediction of the
tap can then be obtained by propagating the estimated sinusoids. This
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is the most common approach to the prediction of mobile radio channels.
Proposed approaches to the estimation of the sinusoids are subspace based
methods like root-MUSIC [17] and a modified ESPRIT algorithm [18], [19].
A different approach is to model the sum of sinusoids as an AR-process. The
estimated AR-parameters are then used to derive a linear predictor [20], that
can be iterated to obtain longer prediction ranges. Overviews of the sub-
space based methods are found in [21] and the AR-model based prediction is
described in [22]. Polynomial filters has also been applied to the prediction
of the complex valued channel [23]. The statistical model by Jake describe a
bandlimited channel with known correlation function. These properties are
exploited in [24] where a continuous time predictor for the Jakes channel is
presented. The use of quadratic predictors [25] or MARS-model based pre-
dictors [26] for the complex tap results in predictors with poor generalization
properties outside the estimation interval [27].

Channel prediction on measured channels

Prediction results for the Jakes channel or channels modeled as a low number
of sinusoids should not be taken as an evidence for high predictability of real
mobile radio channels. In practice the dynamics of the taps are not perfectly
bandlimited, due to birth and death processes of the contributing paths and
the changing angles toward the reflectors. The sinusoids will be damped
and and their frequencies will change. In this thesis the main focus is on
designing predictors that are robust enough to function on real estimated
sampled channels. The predictors are therefor tested on measured broadband
mobile radio channels to validate their performance.

Even though the taps of the sampled channel are mutually correlated in
general they are in this thesis predicted separately to reduce the computa-
tional complexity. This is suboptimal but reduces the number of coefficients
that has to be estimated.

FIR predictors, linear regression

In Chapter 6 an FIR-Wiener-predictor that is designed to minimize the
prediction error for a given range is studied. This direct FIR predictor is
not depending on a model for the dynamics but depends on estimates of the
correlation functions. The structure of the FIR predictor is suitable for taps
described by a sum of sinusoids, but it does not depend on that assumption
to function. Smoothed regressors with different lags, that give good noise
reduction, can easily be used with the direct FIR predictor.
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Delay spacing of regressors

The performance of the direct FIR-predictor is found to depend on the delay
spacing in the predictor (that is the sub-sampling factor). The optimal delay
spacing depends on the tap-to-estimation error ratio, the prediction range
and the number of predictor coefficients. The delay spacing for a direct FIR-
predictor in Chapter 6 is optimized for taps described by the Jakes model,
both for the case with and without noise reduction. The high oversampling
of the channel, that is a condition for the noise reduction to perform well,
suggests that the predictors should be sub-sampled. A robust choice for the
delay spacing of FIR predictors, only depending on the prediction range and
the number of predictor coefficients, is proposed. A delay spacing on the
order of a tenth of a wavelength is generally a good choice.

The use of sub-sampled predictors can lead to aliasing. The noise reduc-
tion pre-processing will however act as an anti-aliasing filter and is thus a
crucial component of the predictor.

Model based prediction

The other main prediction approach pursued in this work is the model-based
predictor. Sub-sampled AR or ARMA models are used for the dynamics of
the taps. These models are then used in a Kalman predictor to obtain
predictions at any range that is a multiple of the chosen delay spacing.
The AR-model based iterated predictor suggested in [22] is shown to be
suboptimal whenever there are estimation errors on the taps. The Kalman
predictor with a suitable model for the noise renders better results.

The correlation functions of the taps and the estimation errors change
over time and have to be estimated from the observed taps, using a limited
amount of data. This limits the number of predictor, or model, coefficients
that can be estimated with sufficient accuracy.

1.3.4 Prediction of the power

It usually the power of the channel that is of interest for the system. It can
be used to obtain power control or to predict the channel states. Predictors
intended for power control usually consider short range prediction, e.g. [28],
[29], [30]. The recent interest in long range prediction is due to the devel-
opments in link adaptation and scheduling. A common approach to obtain
the predicted power of a tap is to use the squared magnitude of the complex
prediction, e.g. [22], [21], [18], [17], [23]. When linear predictors are used
for the tap prediction the absolute square of the magnitude constitutes a
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quadratic predictor (with structural constraints) for the power. An alterna-
tive approach is to perform prediction directly based on previous estimates
of the power. Nonlinear approaches like neural nets [31], [32] and also linear
approaches [33] have been proposed.

The quadratic unbiased predictor of the received power

In Chapter 7, the power prediction of the taps based on linear prediction
of the complex taps are studied. The taps are assumed to be distributed as
complex circular Gaussian stochastic variables. This is a valid assumption
if the number of contributing paths is large. (Under the assumption that
the reflectors actually are best described as clusters of scatterers, this is a
valid assumption even when there is only one contributing cluster.) The
taps are thus assumed to be Rayleigh fading, but no assumptions are made
about the correlation function. The direct use of the squared magnitude of
the linearly predicted complex valued tap, as in [22], is shown to render a
biased power predictor. The bias is equal to the variance of the prediction
error of the complex tap.

An unbiased quadratic predictor can be obtained by adding a bias com-
pensation term. For a Rayleigh fading tap, it is shown that the same pre-
diction coefficients that are optimal for the linear prediction of the complex
valued tap, also are optimal for the quadratic unbiased predictor.

The probability density functions

The probability density functions for the predicted power is of interest in the
design of link adaptation systems [7], [34], [35]. These functions are derived
for the unbiased quadratic predictor on a Rayleigh fading channel.

The performance on measured channels

The predictors are evaluated on a set of measurements described in Chap-
ter 3. The influence of the estimation error is seen to be one of the limiting
factors for prediction. The unbiased quadratic predictor based on the direct
FIR predictor and the Kalman predictor using AR-models for the dynamics
renders roughly the same performance. The benefit of the unbiased predictor
is mainly for prediction ranges above half a wavelength.
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1.3.5 Link adaptation

As a final example for what the prediction can be used for, a link adaptation
system for a flat fading channel is studied in Chapter 8, which is based on the
paper [35]. When adaptive modulation is used to exploit short-term fading
in mobile radio channels, signaling delays create problems with outdated
channel state information. The use of channel power prediction will improve
the performance of the link adaption.

The effect on the link adaptation of uncertainty in the channel states
at the transmitter have been discussed in the literature, see e.g. [4], [5],[6],
[7]. In Chapter 8, the probability density functions for the predicted power
are used to design an optimum adaptive modulation system for a given
channel prediction error variance, that maximizes the spectral efficiency
while satisfying a certain BER requirement. The proposed system utilizes
the unbiased quadratic predictor derived in Chapter 7 to predict the channel
quality at the receiver. The predicted SNR for which the system changes
modulation, the rate regions, are highly dependent on the variance of the
prediction error. Especially is transmission at low predicted SNR avoided
by the scheme when the prediction error variance is high. This is due to the
high relative prediction error for low SNR, described in Chapter 7.
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Chapter 2

Channel Models

This chapter begins with an overview of the commonly used continuous-time
and discrete-time models used to describe terrestrial radio communication
channels for mobile communication. Such models are based on assump-
tions of planar wave-fronts, constant vehicle velocity and propagation via
reflectors and scattering objects. The channel can then be described as a
weighted sum of complex sinusoids with fixed frequencies. The assumptions
and approximations in the derivation of this kind of model will be discussed
below. Furthermore, a generalization of this model is studied, where spher-
ical instead of plane waves are assumed. Finally the effect of clusters of
scatterers and reflectors are discussed. Interested readers are also referred
to textbooks on the subject, see for example [36] and [37].

From linear systems theory it is known that sinusoidal based channel
models can be perfectly extrapolated in space and time, i.e. predicted, if
the number of sinusoids are known and if the predictor is properly tuned.
Experience with prediction on measured channels show that this is not the
case in reality.

In Section 2.3, the limitations of the simple sinusoidal based model is
discussed and a class of models with more general validity is proposed. By
taking spherical wavefronts and non-constant vehicle velocities into account,
a model is obtained in which the sinusoids may have time-varying frequen-
cies, such as chirps. While it would be unrealistic to expect unbounded
predictability in such scenarios, it is still reasonable to believe that predic-
tion over a large fraction of a wavelength of the carrier frequency may be
attainable. The rest of this thesis constitutes an exploration of methods
with which such long-range predictions might be realized.

The situation with a low number of discrete reflectors and scatterers is

15
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an oversimplification of the radio environment. In Section 2.4 we consider
clusters of scatterers and reflectors. The geometrical distribution of these
clusters are mapped to angular distributions of power around the antenna of
the transceiver. For distant clusters, seen under a small angle, an analytical
expression for the resulting channel correlation is derived. The contribution
to the channel from each cluster can be modeled as a damped (not necessary
exponentially damped) complex sinusoid. These results motivate the use of
ARMA-models for the dynamics of the channel.

We will in the following always refer to the moving transmitter/receiver
as the mobile station. Whether it acts as a receiver or transmitter does
not matter, as the channel is the same in both directions due to reciprocity.
Thus both the up- and down-links are treated.

2.1 Multipath Propagation via Reflectors and Scat-

terers

In the classical papers by Clarke [10] and Jakes [11], a statistical passband
description of the mobile radio channel is developed. The model treats a
scenario where N plane waves are arriving at the receiver from random di-
rections. The different propagation paths cause the waves to have different
attenuation and phase shifts. In Figure 2.1, a scenario with a mobile receiv-
ing waves from two different directions is depicted. The base-station antenna
acts as a point source emitting a spherical electro-magnetic wave. On large
distances from the antenna the spherical waves are locally perceived as plane
waves. In Figure 2.1 we have no line of sight propagation (direct path) due
to the shadowing of a building. The buildings further away will also con-
tribute, although the longer propagation paths result in a higher path loss.
In Figure 2.1 two buildings act as remote reflectors and the corresponding
wave-fronts are considered to be almost plane at the mobile station. A lamp-
post nearby the mobile would act as a close scatterer. Close scatterers cause
spherical wave-fronts at the mobile station, whereas rays that are scattered
around corners of houses close by cause cylindrical wave-fronts. Further
away from the scatterers and the corners the corresponding spherical and
cylindrical waves are locally perceived as plane waves. The characteristic
size and distance of objects that make them behave as reflectors rather than
scatterers is discussed in Appendix 2.A.
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Figure 2.1: A mobile antenna receiving two reflected rays that have the
same path distance.

2.2 The Continuous Time Channel for Plane Wave
Fronts

The voltage, V (r, t), which can be measured at an antenna is a function of
the spatial electric field and the antenna properties. The incident field at
the receiver, E(ω, r, t), is a function of the angular frequency ω, the position
r and the time t.1 We represent a transmitted single-frequency radio signal
as a complex exponential,2 eωt. The complex open circuit voltage at the
receiving antenna can then be approximated as the product between eωt

and a space-dependent transfer function, H(ω, r), such that

V (r, t) = H(ω, r)eωt. (2.1)

The in-phase component is obtained as Re[V (r, t)] and the quadrature com-
ponent is Im[V (r, t)]. The wavefronts contributing to the electric field can
be thought of as rays with different delays coming from different directions.
The transfer function H(ω, r) is therefore approximated as the summation
of the contributions from reflectors and scatterers according to

H(ω, r) =
N∑
n=1

an(r)e(ψn(r)−krn(r)). (2.2)

Here krn(r) is the (scalar) electrical distance (with k = 2π/λ = ω/c being
the wave number, where c is the velocity of light) and rn(r) is the physical

1The origin of the coordinate system for the position r, is arbitrary.
2The electric and magnetic fields are the real and imaginary parts respectively
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distance of path n. The number of contributors N may be arbitrary large.
The phase factor ψn(r) depends on the properties of the nth reflector. The
effective complex gain of contributor n is an(r)eψn(r). It is influenced by,
among other things, antenna pattern weighting effects and path attenua-
tion. The attenuation an(r) and the phase shift ψn(r) depend on physical
parameters such as the path distance and the texture of the reflectors. These
parameters are fairly constant over short distances. Therefore we shall re-
gard an(r) and ψn(r) as being space independent, at least over distances of
a few wavelengths. Thus we set

an(r) = an, (2.3)
ψn(r) = ψn. (2.4)

In addition we also assume an to be independent of ω, at least over the band-
width around the carrier frequency, used by a mobile radio communication
system.

An alternative description of the exponential term of (2.2) uses the scalar
product between the wave-vector of the nth path kn(r), and the position r,

H(ω, r) =
N∑
n=1

an(r)e(ϕn(r)−kn(r)·r). (2.5)

A wave-vector is a vector in space that is perpendicular to the wavefront,
pointing in the direction of propagation. The magnitude of the wave-vector
is the wave number, |k| = k = 2π/λ. The phase ϕn(r) in (2.5) includes
the phase shift due to reflection and/or scattering just as ψn(r) in (2.2),
but ϕn(r) also includes a spatially invariant contribution that depends on
the choice of the origin of the coordinate system. The two expressions (2.2)
and (2.5) are fully equivalent but can be used to illustrate different properties
of the channel.

A more detailed description of the exponential term of (2.2) will be
derived next.

The electrical distance and the phase of a received sinusoid
The model (2.1), (2.2) is valid in a local region if the phase, ψn(r), and the
amplitude an(r), for each scatterer remain constant in that region. Define
a right hand coordinate system with the x-axis along the direction of move-
ment and the y-axis pointing to the left in the plane on which the mobile
station is moving (the z-axis will then point up from the plane). Thus the
position along the direction of movement is x (r = [x, 0, 0]).
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The electrical distance between the base station and the mobile along
path n will be a function of x. It can be expressed as

krn(x) = ω
rn(x)
c

= ωτn(x), (2.6)

where rn(x) as before is the location-dependent physical distance between
the base station and the mobile station along path n and τn(x) is the cor-
responding path delay.
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rn(0)

rn(x)
r̂n(x)

θn

Figure 2.2: The change of path distance when moving the mobile. Here
r̂n(x) is the approximate and rn(x) is the true distance after moving the
distance x.

The difference in electrical distance between two points corresponds to
the phase difference for a sinusoid carrier signal. We will below derive an
expression for the difference in electrical distance when the mobile moves a
distance x at an angle θn to the direction of the scatterer/reflector which is
causing the incoming wave front. The path distance from the closest point
of reflection will then change from rn(0) to rn(x) according to

r2
n(x) = r2

n(0) + x2 − 2xrn(0) cos(θn). (2.7)

A second-order Taylor expansion of the square root of this expression around
x = 0 gives

rn(x) ≈ rn(0)− x cos(θn) +
x2 sin2(θn)

2rn(0)
. (2.8)

The corresponding change of electrical distance (the change of phase) from
position 0 to x is thus approximated by

krn(x)− krn(0) ≈ ω

c

(
−x cos(θn) +

x2 sin2(θn)
2rn(0)

)
(2.9)

If the last term in (2.8) is disregarded, then the common linear approxima-
tion, cf. Figure 2.2, is obtained as

r̂n(x) = rn(0) − x cos(θn). (2.10)
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This is the plane wave approximation which is valid if the mobile is moving
over distances which are small in comparison to the distance to the reflector.
For a plane wave the sides in the triangle in Figure 2.2 would be parallel (and
thus not forming a triangle) as in Figure 2.3. The corresponding change of
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Figure 2.3: The change of path distance when moving the mobile a distance
x in a plane wave scenario.

electrical distance is then

krn(x)− krn(0) = ωτn(x)− ωτn(0) ≈ −ωx cos(θn)
c

, (2.11)

where τn(·) denotes the path delay associated with rn(·). The change of
electrical distance (2.11) can also be easily derived using (2.5) assuming
plane waves, that is constant wave-vectors kn, as

kn · r(x)− kn · r(0) =
ω

c
[− cos θn, sin θn, 0] · [x, 0, 0] − 0

= −ωx cos(θn)
c

, (2.12)

where the position vectors are r(x) = [x, 0, 0], r(0) = [0, 0, 0] and the wave-
vector is kn = ω

c [− cos θn, sin θn, 0]. The scalar product representation of
the phase is especially handy in the plane wave case.

To summarize, movement of the transceiver will change the phase ac-
cording to (2.9). For plane waves the first order approximation (2.11) will
be valid.

A continuous-time baseband description
A frequency component ω of a radio signal with nonzero bandwidth can be
expressed as the baseband frequency, ωb, shifted by the carrier frequency, ωc

ω = ωb + ωc. (2.13)
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The complex open circuit antenna voltage (2.1) can then be expressed as

V (r, t) = Hp(ωb + ωc, r)e(ωb+ωc)t, (2.14)

where the subscript p on the transfer function denotes that it is the passband
channel. The radio transmission is performed at the high frequencies of the
passband but it is more convenient to do the signal processing on the symbols
in the baseband. The received signal V (r, t) is therefore transfered from the
passband to the baseband by multiplication with e−ωct. The corresponding
baseband signal y(r, t) can be expressed as

y(r, t) = V (r, t)e−ωct = Hp(ωb + ωc, r)eωbt

= Hb(ωb, r)eωbt. (2.15)

The passband channel Hp(ωb + ωc, r) is thus equivalent to the baseband
channel Hb(ωb, r) within the band-limits of the system. The model (2.2) for
the passband channel is also a model for the baseband channel,

Hb(ωb, r) =
N∑
n=1

an(r)e(ψn(r)−krn(r)). (2.16)

For the wave number we obtain

k = kb + kc =
ωb
c

+
ωc
c
. (2.17)

By using the linearization (2.11) of equation (2.9), the electrical distance
can be rewritten as

krn(x) ≈ ωcτn(0) + ωbτn(0)− kc cos(θn)x− kb cos(θn)x, (2.18)

where the dependence of the electrical distance on the local spatial move-
ment is collected in the last two terms. The first term is constant and may
be included in a combined complex attenuation and phase factor αn that
collects all (nearly) space-independent factors. The second term is similar
to the first term, but since it depends on the baseband frequency we need it
for the transfer function description. The fourth term will be small relative
to the third term if the relative bandwidth is small, i.e., if ωb/ωc is small.
In an application with a carrier frequency at 1800 MHz and a bandwidth of
5 MHz the relative bandwidth will be less than 0.3% and the fourth term can
thus be neglected. The nearly time-invariant attenuation and phase factors
are collected in a complex valued factor αn as

αn = ane
(ψn−ωcτn(0)). (2.19)
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Thus, the baseband transfer function (2.16) can for planar waves and straight
line motion with constant velocity of the mobile station, be approximated
using (2.18) and (2.19) as

H(ω, x) =
N∑
n=1

αne
(−ωτn(0)+ωc

c
x cos(θn)), (2.20)

where the subscript b has been dropped, so that ω from now on will denote
baseband frequency. The phase shifts described by the exponential terms
ωc
c x cos(θn) will cause the rapid variation of the channel when moving short

distances. Since ωc/c = 2π/λc, these terms are significant already when the
traveled distances is a small fraction of the carrier wavelength.

The parameters an, ψn and θn are also space dependent but on a different
scale, governed by the overall geometry, the distance to and the structure of
the reflectors. It is reasonable to assume that these parameters will remain
fairly constant over at least a small number of wavelengths, whereas the
resulting channel varies significantly.

As there exists a parameterized description of the process, where x is the
only variable, it is conceivable that there exists a mapping from observations
of the channel coefficients to the corresponding coefficients at a location
within in a distance of a few wavelengths. Thus, it is likely that the channel
parameters can be predicted reasonably well on this small geometrical scale
of a few wavelengths. The utilized predictor may, but does not have to, rely
on estimates of the parameters an, ψn and θn.

Time dependent transfer function
We have described how the channel depends on the position of the mobile
station. By introducing the velocity of the mobile station we can also de-
scribe the channel as a function of time. If the vehicle drives straight ahead
along the x-axis, at constant velocity, then the traveled distance depends
on time as x = vt, where v is the speed of the vehicle. This introduces a
rotation of each term in the channel (2.20) with an angular frequency

ωDn = ωc
v cos θn

c
= kv cos θn, (2.21)

that corresponds to the Doppler-shift of the carrier frequency due to the mo-
tion.3 The maximum Doppler shift ωD, encountered when driving straight

3The Doppler shift, ωDn , is caused by the movement through the wave pattern. The
wavelength is perceived as shorter (or longer) when traveling towards (or away from) a
wave front.
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towards the transceiver, is

ωD = ωc
v

c
=

2πv
λc

= kv. (2.22)

If we introduce any form of acceleration or change of direction, i.e., driving
in a curve, the Doppler shift will become time dependent.

When the Doppler shift is introduced in equation (2.20) the following
time-frequency domain representation is obtained

H(ω, t) =
N∑
n=1

αne
(−ωτn(0)+ωDn t). (2.23)

The time domain equivalent of this baseband description of the continuous-
time channel is [9]

h(τ, t) =
N∑
n=1

αne
ωDntδ(τ − τn(0)), (2.24)

where δ(τ) is Dirac’s delta function and αn is given by (2.19). The time-
varying channel impulse response is thus described as the sum of N complex
sinusoids, with fixed frequencies between plus/minus the maximum Doppler
frequency ωD.

It is useful to study the Doppler domain representation of equation
(2.24), defined as

H(τ,Ω) =
∫ +∞

−∞

∑
n

αne
ωDntδ(τ − τn(0))e−Ωtdt

= 2π
∑
n

αnδ(τ − τn(0))δ(Ω − ωDn), (2.25)

where Ω is the Doppler frequency (in rad/s). In the Doppler domain not
only the different delays τn(0) for the incoming waves, as in the impulse
response, but also their Doppler frequency ωDn can be studied. Using the
Doppler domain representation (2.25), two rays that arrive with the same
delay τn from different directions, as in Figure 2.1, can be separated by their
different Doppler frequencies.

Let us recapitulate under what conditions the expressions (2.23)-(2.25)
are valid.

• The channel models obtained in (2.23)-(2.25) are valid only locally,
that is for a few wavelengths and corresponding short times (t) when
moving the transceiver.
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• Narrow relative bandwidth is presupposed. This holds for most mobile
radio systems.

• Under the assumption that the scatterers are fixed and not too close to
the receiver, the linearization (2.8) without the quadratic term, result-
ing in equation (2.23) is valid. This is the plane wave approximation.

• The velocity of the mobile is assumed constant, which excludes curves
and accelerations.

• Furthermore, the models do not take polarization effects into consid-
eration.

The use of a spherical wave propagation model is discussed next.

2.3 Sampled Channel with Time Varying Frequen-
cies

The plane-wave approximation can be justified only at a large distance from
the wave source. The assumption of spherical wave propagation may be
more realistic in the following cases:

• A relatively close primary source visible via the direct path,

• A relatively close primary source visible via one or multiple reflections,
modeled by the mirror-image of the primary source.

• A secondary source induced by a distant-source wave front impinging
on a close point scatterer (such as a lamp-post).

Using a more elaborate model based on ray-optics including the last term
in (2.8), we will see that in the presence of close scatterers the description
of the channel as a sum of time invariant weighted complex sinusoids is
an oversimplification. This may motivate the use of adaptive or nonlinear
predictors.

The sampled channel: Several reflectors may contribute to each
tap
We shall repeat and expand the discussion performed in the last section but
now in the time domain and for sampled channels. Recall equations (2.2)
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and (2.17) with ωb = ω in a base-band formulation. Let the position vector
r depend on time. Thus we obtain

H(ω, r(t)) =
N∑
n=1

an(r(t))e(ψn(r(t))−(ωc+ω)rn(r(t))/c). (2.26)

The nth path delay is τn(t) = rn(t)/c. We can view the expression (2.26) as
a function of time directly by dropping the position r(t) and just using t as
variable. The time-varying impulse response h(τ, t) for a baseband channel
at time t in a multi-path environment can thus be described by

h(τ, t) =
N∑
n=1

an(t)e(ψn(t)−ωcτn(t))δ(τ − τn(t)), (2.27)

where ωc is the carrier frequency (in rad/s) and an(t) is a time-varying at-
tenuation factor covering antenna effects, path loss and attenuation due to
reflection and scattering for the nth path [9]. The phase shift caused by re-
flectors and scatterers is described by ψn(t) whereas τn(t) denotes the prop-
agation delay for the nth path. The expression (2.27) corresponds to (2.24)
without the approximations due to linearization of the change of path dis-
tance and small relative bandwidth that render the Doppler frequency de-
scription of the phase.

Let g(·) be a time invariant impulse response due to pulse shaping and
receiver filtering and let the symbol interval be T . The discrete-time channel
impulse response can then be described by an FIR-filter with the mth tap
given by [38]

hm(t) =
∫ MT

0
g(Tm− τ)h(τ, t)dτ

=
N∑
n=1

g(Tm− τn(t))an(t)e(ψn(t)−ωcτn(t)), (2.28)

where MT covers the length of the continuous-time impulse response. Note
that N may be arbitrary large. In an ideal noiseless and lossless environ-
ment the radio waves could be reflected between objects forever, resulting
in paths of unbounded length, requiring an IIR description of the channel.
In practice we can however assume that the impulse response h(τ, t) will
be of finite length, as the long paths are sufficiently attenuated, through
propagation losses and losses at the reflecting/scattering surfaces, to fall
below the background noise level. With an effective support of g(·) on
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the closed interval [−KT,KT ], the number of reflectors and scatterers con-
tributing to the mth tap will be limited to paths with delays in the interval
[T (m −K), T (m + K)]. A limited number of contributors is an advantage
when the tap is to be predicted.

Effective source
If we base our modeling on ray optics and omit the effects of diffraction and
Fresnel optics, a scatterer can be modeled as a secondary effective source
induced by a wave front whereas a reflector generates a secondary effective
source as the mirror image of the emitting source. Thus both scatterers
and the mirror images can be viewed as secondary effective sources emit-
ting spherical wavefronts. Even with this simplification we will encounter
a model where the phases of the rotating channel coefficients are nonlinear
functions of time. Such coefficients can not be predicted accurately by a
linear predictor.

Path delays and phase
To simplify the expression of the phase in (2.28) we separate time-invariant
and time depending factors. The path delay τn(t) can be decomposed into
the sum of a time-varying delay from the effective source to the mobile
(τMS
n (t)) and a time-invariant path delay from the base station to produce

the secondary effective source, τBS
n as

τn(t) = τMS
n (t) + τBS

n . (2.29)

For a scatterer τBS
n is the path delay from the base station to the scatterer

and τMS
n (t) is the path delay from the scatterer to the mobile station. For a

reflector the secondary source is the mirrored image of the primary source.
The path delay from the secondary source to the mobile station is thus
equal to the path delay from the primary source to the mobile station, that
is τMS

n (t) = τn(t). Accordingly is τBS
n = 0 for reflections.

The geometry for the scatterers and reflectors are assumed to be time-
invariant. The phase shift due to the time invariant delay, τBS

n , can be
included in a complex attenuation factor which is now defined as

αn,m(t) = g(Tm− τn(t))an(t)e(ψn(t)−ωcτBS
n ), (2.30)

while the time-varying term

φn(t)
4
= −ωcτMS

n (t) = −krMS
n = −k||rMS

n (t)||, (2.31)
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remains in the exponential factor of (2.28). Note that an(t) and ψn(t) and
thus αn,m(t) are assumed to be time-varying on a much slower time scale
than φn(t). The discrete-time channel (2.28) can thus be expressed as

hm(t) =
∑
n

αn,m(t)eφn(t). (2.32)

In (2.31), rMS
n (t) is a vector in space pointing from the nth effective source to

the mobile station (see Figure 2.4). Consequently the norm of rMS
n is nothing

but the physical distance rMS
n . For spherical waves the position vector rMS

n is
parallel to the wave vector, kn(t). The phase φn(t) is thus solely a function
of the electrical distance to the effective source. When the distance changes
by as little as one wavelength the phase φn(t) changes by 2π, causing the
effect of small-scale (fast) fading. In the model based on the plane wave-
approximation (2.24) the phase φn(t) has only a linear dependence on time.
In the following we will discuss how much the linearized model can deviate
from a phase modeled using spherical waves.

Straight-line motion
Consider, as before, the simplest mobile dynamics, a straight-line motion
at constant velocity v. For notational convenience we denote the initial
position by rMS

n (0) = rMS
n without explicit time index. We then have the

phase function

φn(t) = −k||rMS
n (t)|| = −k||rMS

n + vt||. (2.33)

Let Ωn(t) denote the angle between the wave vector kn(t) (or equivalently
the position vector rMS

n (t)) and the velocity vector v, see Figure 2.4. The
angle towards the effective source, also called the angle of incidence, is

θn(t) = π − Ωn(t).

Furthermore let

θn = θn(0), rMS
n (0) = ||rMS

n (0)||, v = ||v||, rMS
n (t) = ||rMS

n (t)||.

Then, by using the cosine theorem as in (2.7) the square of the path distance
can be expressed as

rMS
n

2(t) = ||rMS
n (t)||2 = rMS

n
2 − 2rMS

n vt cos θn + v2t2. (2.34)

The phase function at the position rMS
n (t) at time t can be rewritten as

φn(t) = −krMS
n (t) = −krMS

n

√
1− 2

vt

rMS
n

cos θn +
(
vt

rMS
n

)2

. (2.35)
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Pointsource n
Wavefronts

kn(t)

kn(0)

vt

v

Ωn(0)

θn(0)

rMS

n (0)

Ωn(t)
θn(t)

rMS

n (t)

Figure 2.4: The change of path distance, rMS
n (t), when moving with constant

velocity, v. Here Ωn(t) is the angle between the velocity vector v and the
wave vector kn(t), whereas the angle θn(t) = π−Ωn(t) is the angle between
v and the direction to the effective source at time t (that is −rMS

n (t)).

We now use a second-order approximation√
1 + y ≈ 1 + y/2− y2/8,

with y representing the sum of the two last terms under the square root sign
of (2.35). Furthermore, we neglect terms in vt/rMS

n of higher order than two
since vt/rMS

n � 1 and thus obtain

φn(t) ≈ −krMS
n

[
1− vt

rMS
n

cos θn +
1
2

(
vt

rMS
n

)2

sin2 θn

]

= −krMS
n + ωDnt−

krMS
n

2

(
vt

rMS
n

)2

sin2 θn, (2.36)

with the Doppler frequency ωDn = kv cos(θn) as in (2.21). No terms of
higher order than (vt/rMS

n )2 are kept in the series expansion. The first term,
the initial phase, is a time invariant phase shift and can be included in
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the complex attenuation factor αn,m(t). The second term represents the
phase rotation at the Doppler frequency, encountered in Section 2.2. In
addition to this linear increase of the phase, we obtain a third, quadratic
term originating from the sphericity of the wave fronts. The time-varying
part of the phase in the channel model (2.32), can thus be approximated as

φn(t) ≈ ωDnt−
krMS
n

2

(
vt

rMS
n

)2

sin2 θn. (2.37)

The quadratic time dependence of the phase can be interpreted as a chirp,
whereas a strict linear time dependence would represent a complex sinusoid
with time-invariant frequency. The first term in (2.37) is thus sufficient in
the case of plane waves.

2.3.1 The instantaneous frequency

The instantaneous frequency, that is the time derivative of the phase func-
tion, can offer further insights into the relation between phase and Doppler
frequency. The instantaneous frequency can be derived directly from (2.35)
and will then be expressed in the initial angle θn, speed, and time. It can
also be derived by operating on (2.33) to obtain an instantaneous frequency
expressed in the instantaneous angle θn(t). In the latter approach the time-
derivative of rMS

n (t) is needed. An infinitesimal step in time, ∆t, result in a
change of path distance as

rMS
n (t + ∆t) = ||rMS

n (t) + v∆t||. (2.38)

As ∆t is infinitesimally small we can use the approximation (2.10) in (2.38),

rMS
n (t + ∆t) = rMS

n (t)− v cos θn(t)∆t. (2.39)

The time-derivative of the path-length is thus

drMS
n (t)
dt

= lim
∆t→0

rMS
n (t+ ∆t)− rMS

n (t−∆t)
2∆t

= −v cos θn(t). (2.40)

The instantaneous frequency is thus given by

φ̇n(t) = −k d
dt
||rMS

n (t)|| = kv cos θn(t)

= ωD cos θn(t) = ωDn(t), (2.41)



30 Chapter 2: Channel Models

where ωD is the maximum Doppler frequency (2.22) and ωDn(t) is the in-
stantaneous Doppler frequency for path n. If instead the approximate ex-
pression (2.36) is used in the derivation of the instantaneous frequency, then
we obtain

φ̇n(t) ≈ k
[
v cos θn −

t

rMS
n

(v sin θn)2

]
= ωD cos θn − ωD

tv

rMS
n

sin2 θn. (2.42)

The instantaneous frequency can thus either be described as an instanta-
neous Doppler shift depending on the momentary angle of incidence θn(t)
as in (2.41) or approximately by the difference between the Doppler shift at
time t = 0 and a time dependent correction, as in (2.42).

Phase as a function of instantaneous angle of incidence
When comparing the expression (2.41) to (2.42), one can be led to assume
that if the instantaneous Doppler frequency was used instead of the Doppler
frequency corresponding to the angle at t = 0, in (2.36), then there would
be no need for a correction term in (2.36). This is however not the case
as we will see below. To express the distance rMS

n (t) as a function of the
instantaneous angle of incidence θn(t), we can by using the cosine theorem
and the fact that cos Ωn(t) = cos(π − θn(t)) = − cos θn(t), obtain

rMS
n

2 = (vt)2 + rMS
n (t)2 + 2vtrMS

n (t) cos θn(t). (2.43)

Solving for rMS
n (t) we obtain

rMS
n (t) = −tv cos θn(t) + rMS

n

√
1−

(
vt

rMS
n

)2

sin2 θn(t). (2.44)

The phase function at the position rMS
n (t) at time t is −krMS

n (t) and can thus
be expressed as

φn(t) = ωDn(t)t− krMS
n

√
1−

(
vt

rMS
n

)2

sin2 θn(t), (2.45)

or using the same approximation as in (2.36) as

φn(t) ≈ −krMS
n + ωDn(t)t +

krMS
n

2

(
vt

rMS
n

)2

sin2 θn(t). (2.46)

The initial phase is obviously the same as in (2.36). In the second term the
difference lies in that the instantaneous Doppler frequency ωDn(t) is used
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instead of the initial Doppler frequency ωDn . Observe that even though
we use the instantaneous Doppler frequency there is a quadratic correction
term in the phase, in this case involving sin2 θn(t) instead of sin2 θn.

The sine of the instantaneous angle of incidence can however by appli-
cation of the sine and cosine theorem, be expressed in terms of the time and
the initial values of distance and angle, as

sin2 θn(t) =
rMS
n

2 sin2 θn

rMS
n

2(t)
=

rMS
n

2 sin2 θn

rMS
n

2 + (vt)2 − 2rMS
n vt cos θn

. (2.47)

Using the relation (2.47) we can show that the term ( vt

rMS
n

)2 sin2 θn(t) occur-

ring in the correction terms of (2.45) and (2.46) is bounded:

0 ≤
(
vt

rMS
n

)2

sin2 θn(t) ≤ 1. (2.48)

Thus the correction terms in (2.45) and (2.46) are limited whereas the cor-
rection term in (2.36) grows continuously in magnitude. It is thus more
convenient for modeling, to use a time varying Doppler frequency than to
assume a fixed one, as in (2.36).

2.3.2 Linearized model

Assuming plane incoming waves, that is waves with a constant angle of
incidence θn(t) = θn, and a time invariant complex attenuation factor αn,m
in (2.32), we obtain, by approximating φn(t) in (2.36) by −krMS

n + ωDnt
and including the phase factor −krMS

n in αn,m, the following commonly used
approximation [11]

hm(t) =
N∑
n=1

αn,me
ωD cos θnt =

N∑
n=1

αn,me
ωDnt. (2.49)

This is the sampled version of the continuous impulse response (2.24). This
model has been used as a basis expansion model for blind equalization [39]
and also for long-range prediction of mobile radio channels by Duel-Hallen
and co-workers [20].

As we have seen in (2.46) the Doppler frequencies actually vary, and
therefore a more suitable model is

hm(t) =
N∑
n=1

αn,m(t)eωDn(t)t, (2.50)
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where ωDn(t) is the instantaneous Doppler frequency for the nth path and
αn,m(t) is the instantaneous complex attenuation. Both these parameters
can be assumed to vary slowly.

Phase error in sinusoid models
The linear phase model, that is the deterministic sinusoid model (2.49), will
accumulate a phase error when used in a situation with nearby scatterers
where the plane wave approximation does not hold. The size of this phase
error defines the maximum time interval over which the linear deterministic
model can be used as an approximation in the spherical-wave case. The
difference in phase can be approximated by the second order term in (2.36)

∆φn(t) = − kv2

2rMS
n

t2 sin2 θn = − ωDv
2rMS
n

t2 sin2 θn. (2.51)

The largest phase deviation in the model (2.49) relative to (2.35) occurs
for a transversal vehicle movement at θn = π/2, when the velocity vector
is orthogonal to the direction of the incident wave at time t = 0 and the
nominal Doppler shift vanishes.

Example 2.1 When is the linear model inadequate?

Consider a situation where there is only one path contributing to the chan-
nel and the velocity vector is orthogonal to the direction of the incident
waves at time t = 0. The contribution by the path to the channel tap is
a chirp h(t) = αeζt

2
, where the phase is obtained from (2.36). The phase

factor −krMS is part of α, ωDnt = 0 since ωDn is zero as the waves ar-
rive perpendicular to the direction of motion, and the third of term (2.36)
yields ζt2 with ζ = −kv2/(2rMS ) since θ = π/2. The true parameters, α
and ζ, at time t = 0 are now used either in the linear sinusoid model (2.49)
or in the model (2.32), with the quadratic phase expression (2.35), and the
time is propagated. Two different predictions of h(t) into the future are
then obtained. The phase of h(t) at time t = T is ζT 2, and this will
also be the result in the model containing the quadratic term. The linear
phase model, with the accumulated phase error of ∆φ(T ), will predict the
contribution to be

ĥ(t) = αe0 = αe(ζT
2+∆φ(T )). (2.52)

The channel tap prediction error, for the predictor using the linear model,
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at time t = T is then

ε(T ) = α(eζT
2 − e(ζT 2+∆φ(T ))) = αe(ζT

2+∆φ(T )/2)(−2) sin
(

∆φ(T )
2

)
= αe(ζT

2−∆φ(T )/2)(−2) sin
(

∆φ(T )
2

)
(2.53)

and the relative power of the error is

|ε(T )|2
|α|2 = 4 sin2 ∆φ(T )

2
. (2.54)

Compare this to the result if we would predict the tap by its mean, ĥ(T ) =
0, which would give a relative error of one. The time limit for how long
the linear model can be used as a predictor, with better performance than
the mean, is obtained by

4 sin2 ∆φ(T )
2

≤ 1, (2.55)

that is
|∆φ(T )| ≤ π/3. (2.56)

Thus, predictions based on the extrapolation of a sinusoidal model will
perform better than the zero predictor only up to prediction horizon T
where the accumulated phase error has grown to π/3.

Based on the above example for a situation with just one path with a tap
acting as a chirp, the time interval Tπ/3 denotes the time over which a linear
predictor based on the model (2.49) actually renders predictions better than
using the mean as the prediction. Defining this time interval, Tπ/3, for the
worst case θn = π/2, as the interval after which the phase approximation
error has grown to 60◦, | ∆φn(t)|Tπ/3 | = π/3, we obtain from (2.51)

Tπ/3 =

√
λrMS

n

3v2
. (2.57)

For this time span, the above second-order approximation (2.36) can be well
justified as we have

vt

rMS
n

∣∣∣∣
t=Tπ/3

=

√
λ

3rMS
n

� 1 (2.58)
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where the last inequality holds because even a close point scatterer will be
many wavelengths away from the mobile transceiver in outdoor mobile radio
scenarios. There is thus no need for more terms in the series expansion of
the phase in (2.36).

The time interval Tπ/3 can be used to determine if the linear model (2.49)
is adequate over a certain time interval. In environments where Tπ/3 is large,
there is no need for the quadratic term in the phase. Whenever Tπ/3 is small,
either a time-varying model or a phase with a quadratic term is called for.

Example 2.2

A simple scenario including a vehicle driving at 90 km/h past a close point
scatterer, 10 m beside the road, demonstrates the limitations of the linear
model. With a carrier frequency of 1800 MHz the resulting Tπ/3 is as
short as 30 ms (corresponding to a traveled distance of 4.5 wavelengths).
A linear deterministic model will thus not be valid for more than a few
wavelengths in this scenario. An attempt to estimate such a model for a
longer data interval (estimation window) would result in an average linear
model for the estimation interval, with poor properties for extrapolation
outside the interval.

However, this problem does not exist for more distant (primary and
reflected) sources, say, at rMS

n = 250 m and beyond where we obtain Tπ/3 =
150 ms, which is more than a distance of 22 wavelengths. The linear model
will then be a good approximation of the true dynamics of the channel for
a longer distance, than in the previous case.

2.3.3 Path loss

The path loss for a scattered or reflected path is proportional to the path
distance as [13]

an(t) ∝ (rMS
n (t)⊗ rBS

n (t))−γ/2 (2.59)

where rMS
n (t), rBS

n (t) denotes the distance from the nth scatterer/reflector to
the mobile station and to the base station respectively and γ is the power
attenuation exponent. In (2.59) rMS

n (t) ⊗ rBS
n (t) denotes rMS

n (t) · rBS
n (t) for

scattering and rMS
n (t)+rBS

n (t) for specular reflection. The power attenuation
exponent corresponding to the path loss in free space is γ = 2. Okamura [40]
suggest that the power attenuation exponent should be γ = 2 + 2m where
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m depends on the distance between the base station and the mobile station.
Up to 10 km m = 0.5 gives a good approximation for the power attenua-
tion observed in measurements. For close scatterers the power attenuation
exponent corresponding to the path loss in free space, γ = 2, can be used.
Even fairly close scatterers will give contributions with amplitudes which
are an order of magnitude weaker than the specular reflections. Thus, it
is appropriate to use the linear model (2.49) in situations where there are
direct line of sight (LOS) or large contributions from specular reflections,
that is strong reflections from large buildings. In all other cases the effect
of spherical waves from nearby scatterers introduces a significant deviation
from the linear model (2.49).

2.3.4 Curves and plane waves

Phase functions containing quadratic terms occur when the vehicle acceler-
ates or makes a turn, even if the plane-wave approximation holds. Assume
that the mobile moves at constant tangential speed v around a circle of
radius R with its center at the origin of the coordinate system such that

||r(t)|| = R, (2.60)

where r(t) denotes the position of mobile station. As the mobile station now
changes direction we use a fixed coordinate system as shown in Figure 2.5.
Let βn be the angle between the constant wave vector kn (plane wave)
and the initial position vector r(0) as in Figure 2.5. Recall that the phase
could be calculated as the scalar product between the wave vector and the
position vector added to a time invariant phase factor as for the continuous
channel (2.5). We take φn(t) to be the time varying part of the phase
in (2.31). If we initiate φ(t) to be zero when the position vector and the
wave vector are orthogonal, then the phase function at time t is given by

φn(t) = −kn · r(t)
= −k[cos βn, sin βn, 0] ·R[cos(vt/R), sin(vt/R), 0]
= −kR cos(vt/R − βn). (2.61)

The phase does not increase as a linear function of time here. Instead the
Doppler shift oscillates (slowly and) symmetrically around 0. The maximum
deviation from a linear phase function occurs at the time instances when
the cosine function has its maximum curvature, which coincide with the
cosine maxima. These are reached when the vehicle moves transversal to the
incident wave, that is when vt/R = βn, where the instantaneous Doppler
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Figure 2.5: Plane waves and a vehicle driving with velocity v in a curve
with radius ||r(t)|| = R.

shift vanishes but the corresponding chirp rate (according to (2.36)) has its
maximum. Consider the time interval Tπ/3 over which a phase error of π/3
is accumulated. To this end, a second-order approximation of the cosine
function is used around its maximum, i.e.

φn(t) ≈ −kR
[
1− 1

2
(vt/R)2

]
, (2.62)

where t is relative to the time where the cosine maximum is reached during
the circular motion. Again we have obtained a second-order polynomial
phase behavior. The constant term corresponds to the linear deterministic
model which, for transversal motion, would not show any Doppler shift at
all. The quadratic term represents the deviation from the linear behavior.
Using Tπ/3 as the measure for how fast these deviations occur we obtain

Tπ/3 =

√
λR

3v2
. (2.63)
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For this time span, the above second-order approximation can be well jus-
tified as we have

vτ

R

∣∣∣
τ=Tπ/3

=

√
λ

3R
� 1 (2.64)

where the last inequality holds because the minimal turning circle diameter
of any car is orders of magnitudes larger than the radio wavelengths used in
digital mobile communications systems.

Example 2.3 Is the linear model adequate for driving in curves?

We evaluate equation (2.63) for some typical speeds and sizes of curves.
With a carrier frequency of 1800MHz, a speed of v =90 km/h and a
curve radius of R =100 m we have Tπ/3 =94 ms (2.4 m or 14 wavelength
of traveled distance) and, for v =20 km/h and R =10 m, Tπ/3=130 ms
(0.75 m or 4.5 wavelengths of traveled distance). We conclude that normal
deviations from the exact straight-line motion may result in significant
phase errors of the linear deterministic fading model over estimation time
windows of the order of 0.1 s.

2.4 Statistical Channel Model

The smallest objects that radio-waves interact with are on the order of a
wavelength long. Facades of old houses in any European town consist not
so much of flat surfaces as sculptured windows and decorations, thus a lot
of object with shapes on the scale of a wavelength, about 15 cm, for a 2GHz
radio interface. Such a facade will not act as a reflector but as a cluster
of scatterers. In the previous sections we have treated the effect of discrete
point source reflectors and scatters. Here we will instead study clusters of
objects and their effect on the channel.

In antenna array measurements of the angular distribution of power [41]
it is observed that most reflecting objects indeed have an angular spread.
The object thus does not act as a perfect reflector. Rather it act more like
a cluster of scatterers.

A distant group of buildings which act as reflectors can also constitute a
cluster. Each building then contributes a plane wave to the energy received
by the transmitter, but from a slightly different direction and with a differ-
ent phase as compared to the contribution from adjacent other houses. In
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Section 2.2 we saw that, due to the movement of the transceiver, a plane
wave results in a channel that can be approximated by a complex sinusoid.
The channel discussed here will then consist of a large number of complex
sinusoids with different phases but with almost the same frequency. When
the number of sinusoids is high enough, the law of large numbers causes the
sum of sinusoids to result in a complex Gaussian channel and the contribu-
tion to the channel from the cluster of buildings can be approximated as a
narrow-band filtered Gaussian noise.

The optimal predictor for a signal being a linearly filtered Gaussian noise,
which is disturbed by an additive Gaussian noise, is linear. To study the
linear prediction properties for scenarios with angular spread, we need to
describe the correlation and Doppler spectrum of the channel.

In the following sections we will recapitulate some results from angular
power distributions, link these results to geometrical properties of clusters
of scatterers and finally motivate the choice of simple linear AR and ARMA
models for the dynamics of the channel.

2.4.1 Correlation

The point source reflector and scatterer model lead to the linearized model (2.49)
where each tap of the channel is modeled as the sum of complex sinusoids
caused by plane waves,

h(t) =
∑
n

αneωD cos θnt. (2.65)

The linear prediction properties depend on the the auto-covariance function
for the tap, which is

rh(τ) = E{h(t)h∗(t− τ)} = E

{∑
k

∑
l

αkα
∗
l e
ωD(cos θk−cos θl)teωD cos θlτ

}
,

(2.66)
where we take the average over time of (2.66) to obtain

rh(τ) =
∑
n

|αn|2eωD cos θnτ . (2.67)

It is the magnitude and direction of arrival of the waves that matters for
the correlation.

Instead of point source scatterers, resulting in discrete angles of arrival,
we shall here, according to the discussion above, use a continuous distribu-
tion over the angle of arrival. In other words, we assume a diffuse scattering
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processes. The sum in (2.67) is then exchanged for an integration over the
angle of arrival [9]. The normalized auto-covariance function for the channel
can then be expressed as

rh(τ) =
∫
γ
fγ(γ)eωD cos γτdγ, (2.68)

where γ is the angle between the direction of movement and the direction to
the contributing scatterer, as defined in Figure 2.6, and fγ(γ) is the angular
probability density function. If the antenna is not omni-directional then
the characteristics of the antenna gain has to be included into fγ(γ). It is

β

α

γ

v

Figure 2.6: The angle γ is the angle between the direction of motion and
the direction to the source of the incoming waves. (Note that it can be a
secondary source.) The angle in the azimuthal plane is α and the elevation
angle is β

the factor cos γ that is the important property and as it is a function of a
stochastic variable with known distribution we can obtain the PDF for cos γ
by transformation of fγ(γ) [42]. We begin the transformation by finding the
solution to the inverse function of cos γ,

c = g(γ) = cos γ (2.69)
γ = ±| arccos c|. (2.70)

There are thus two solutions to the inverse of g(γ). To obtain the PDF for
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c we also need the derivative of g(γ),

g′(γ) =
dc

dγ
= − sin γ = −

√
1− c2. (2.71)

Now the corresponding PDF for c, with γ = | arccos c|, can be formed as

fc(c) =
fγ(γ)
|g′(γ)| +

fγ(−γ)
|g′(−γ)| =

{
fγ(| arccos c|)+fγ(−| arccos c|)√

1−c2 −1 < c ≤ 1
0 otherwise.

(2.72)
The correlation (2.68) for the channel is then obtained as

rh(τ) =
∫ 1

−1
fc(c)eωDcτdc. (2.73)

An important property of the channel is the Doppler spectrum, which can
be obtained as the Fourier transform of the auto-correlation of the channel,

Rh(ω) =
∫ ∞
−∞

rh(τ)e−ωτdτ =
∫ 1

−1
fc(c)

∫ ∞
−∞

e(ωDc−ω)τdτ︸ ︷︷ ︸
2πδ(ω−ωDc)

dc (2.74)

=
2π
ωD

∫ ωD

−ωD
fc

(
u

ωD

)
δ(ω − u)du =

2π
ωD

fc

(
ω

ωD

)
, (2.75)

where we in the second last equality have made the change of variables
u = ωDc and in the last equality we have exploited the properties of the
Dirac delta function. The Doppler spectrum thus directly depend on the
distribution for c and can, utilizing (2.72), be expressed as

Rh(ω) =

 2π
fγ(arccos ω

ωD
)+fγ(− arccos ω

ωD
)√

ω2
D−ω2

|ω| ≤ ωD
0 otherwise,

(2.76)

which is known as Gans mapping [43]. The Doppler spectrum is thus band-
limited. This is a result which is valid locally but as soon as the time vari-
ation of the angular power distribution is taken into account, the spectrum
is no longer band-limited.

There is thus a direct relation between the angular distribution of power,
which is determined by the geometry of the scattering environment, and the
correlation of the channel. A remaining problem is to obtain reasonable
distributions for γ. To get some ideas of that we will consider some special
cases in the following.
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2.4.2 The flat world

A common simplification of the problem with the angular distribution of
power is to assume that all scattering processes are in the azimuthal plane.
Then β = 0 and α = γ in Figure 2.6 and the covariance (2.68) becomes an
integral from −π to π over the angles in the plane,

rh(τ) =
∫
α
fα(α)eωD cosατdα. (2.77)

The angular distribution fα(α) simply states from which direction a certain
amount of power comes, in the horizontal plane. Just as for the spatial angle
γ we can form the PDF for a = cosα,

fa(a) =
fα(α) + fα(−α)√

1− a2
=

{
fα(| arccos a|)+fα(−| arccos a|)√

1−a2
−1 < a ≤ 1

0 otherwise,

(2.78)
so the Doppler spectrum can then obtained as in (2.75)

Rh(ω) =
2π
ωD

fa

(
ω

ωD

)
. (2.79)

The mapping of equation (2.79) can be understood in geometrical terms,
just as with the point-source scattering model discussed earlier. An incident
wave with the angle of arrival α to the direction of motion of the mov-
ing transceiver is perceived as compressed by a factor proportional to the
speed and cosα (the projection of a unit distance on the direction given
by the angle α). The distribution fa(a) can be interpreted as the normal-
ized Doppler spectrum measured in Hz instead of rad/s, with the maximum
Doppler frequency set to 1Hz.

Omni-directional scattering

In a rich scattering environment waves from all directions are equally likely
and the angular PDF is

fα(α) =
1

2π
. (2.80)

The corresponding Doppler spectrum, obtained by inserting (2.80) into (2.78)
and (2.79), is

Rh(ω) =

{
2√

ω2
D−ω2

|ω| ≤ ωD
0 otherwise,

(2.81)
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which is the Jakes spectrum [11]. The corresponding correlation function is

rh(τ) = J0(ωτ) (2.82)

where J0(·) is the zero order Bessel-function of the first kind.
Furthermore, all angles of incidence are assumed to be time-invariant

and equally probable. That is, the angles θn are mutually uncorrelated with
uniform distribution in the interval [0, 2π[. The Doppler frequency is given
as ωD cos θn. As the probability distribution for cos θn has high peaks at
±1, the Doppler frequencies ωDn are likely to be close to the limits ±ωD.
This causes the well known bathtub shape of the Doppler spectrum for a

−1 −0.5 0 0.5 1
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Figure 2.7: Doppler spectrum for a Rayleigh fading tap. The frequency is
normalized by the Doppler frequency ωD and the power is normalized by
the power of the tap. There is no power outside the the bounds set by the
Doppler frequency (±1).

Rayleigh fading tap shown in Figure 2.7. This theoretical Doppler spectrum
for a Rayleigh fading tap is a good approximation for taps in a narrow-
band channel, when the assumptions of a high number of reflectors are met.
For broad-band channels there will be more taps in the the discrete-time
baseband channel resulting in higher spatial resolution. As a result, fewer
reflectors will contribute to each tap. This cause the Doppler spectra for the
taps in broad-band channels to have much more fine grained structure, as
illustrated in Appendix A. Still, the Jakes model will be used as a benchmark
channel through out the thesis.
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2.4.3 Elevation

Radio waves that are diffracted over roofs down into a street will not reach
the transceiver in the horizontal plane, neither will reflected waves from
scatterers on high buildings in the vicinity. The received power might thus
have a distribution in elevation too.

The PDF for the elevation angle power distribution is fβ(β) where the
elevation angle β is between −π/2 and π/2. The PDF for b = cos β can just
as for γ be obtained as

fb(b) =
fβ(β) + fβ(−β)√

1− b2
=

{
fβ(| arccos b|)+fβ(−| arccos b|)√

1−b2 0 < b ≤ 1
0 otherwise,

(2.83)
Note that the borders are different to (2.72) due to the different region of
valid angles.

A simple trigonometric calculation renders that cos γ = cosα cos β. Thus,
if the azimuthal and elevation angles are independent, then the correlation
can be obtained as

rh(τ) =
∫
c
fc(c)eωDcτdc =

∫
γ
fγ(γ)eωD cos γτdγ

=
∫
α

∫
β
fα(α)fβ(β)eωD cosα cos βτdαdβ. (2.84)

As cos γ = cosα cos β, the stochastic variable c is the product between
a = cosα and b = cosβ. The PDF for the product of two stochastic variables
can be obtained as [42](pp. 147)

fc(c) =
∫ 1

−1

fa(a)
|a| fb

( c
a

)
da =

∫ 1

0

fb(b)
b

fa

(c
b

)
db (2.85)

From (2.75) we have a direct relationship between fc(c) and the Doppler
spectrum. Thus, if we have both an azimuthal and an elevation angular
distribution, then the Doppler spectrum can easily be obtained with the aid
of the integral (2.85). There have been a few suggestions for the distribution
of elevation angle, e.g. [44] and [45].

Example 2.4

Aulin [44] proposed the elevation angular distribution

fβ(β) =

{
cos β

2 sin β0
|β| ≤ β0 <

π
2

0 otherwise.
(2.86)
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The parameter β0 is the maximum elevation angle, which corresponds to
the angle under which the highest building is observed. By inserting (2.86)
into (2.83) we obtain

fb(b) =
1

sinβ0

b√
1− b2

=
1√

1− b20
b√

1− b2
(2.87)

where b0 = cos β0, which imposes 0 < b0 ≤ 1. The PDF for c is then

fc(c) =
1√

1− b20

∫ 1

b0

1√
1− b2

fa

(c
b

)
db (2.88)

The main advantage of this distribution is that it offers an analytical
solution for the Doppler spectrum in the case of omni-directional scattering
in the azimuthal plane [44], that is fα(α) = 1/2π,

Rh(ω) =


π

2ωD sin β0
ωD cos β0 ≤ |ω| ≤ ωD

2π
ωD

(
π
2 − arcsin 2 cos2 β0−1−(ω/ωD)2

1−(ω/ωD)2

)
|ω| < ωD cos β0

0 |ω| > ωD
(2.89)

An important property of the Doppler spectrum (2.89) in Example 2.4
is that it remains finite everywhere, as opposed to the Jakes spectrum. The
spread in elevation angle of the incident waves smears out the distinct peaks
of the Jakes Doppler spectrum, due to the integral over the elevation distri-
bution. Peaks will still be present, but not as high and narrow as in the
Jakes spectrum. Most reasonable elevation distributions result in this effect
that change the shape of all Doppler spectra in the same manner as the
Jakes spectrum.

2.4.4 Spatial and angular distribution

It is the scattering environment that results in the angular distribution of the
power. There exists a mapping from the spatial distribution of the scatterers
to the angular distribution. The simplest of these mappings has already
been treated, namely the flat distribution of scatterers in all directions. In
this section we assume the single scattering model (SSM). Then, only single
scattering processes contribute to the power as multiple scattering events
are assumed to be too weak to contribute. The power will thus propagate
from a scatterer directly to the receiver without interaction with the other
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scatterers in the cluster. A cluster is just a geometrically distributed group
of point scatterers. The scenario in Figure 2.8 is a typical mobile radio
channel model. There are distant spatially distributed clusters with different
path delays, that each contribute to the channel. Usually a ring with local
scatterers is also included in the model of the channel [13]. We will in the
following only consider distant clusters.

Figure 2.8: The two distant clusters of scatterers (group of buildings), seen
in different directions and under different angles, will contribute to different
taps of the channel. There is a ring of local scatterers around the transceiver
to the right. The scattering in the local environment will give a contribution
to all taps. In the SCM model it is assumed that the power after two
scatterng events can be neglected, then the local scattering will contribute
only to the first tap.

In the following two examples, we introduce a one-dimensional and a
two-dimensional distribution of scatters, respectively, and their angular dis-
tribution. The results are obtained for a flat world, but can be generalized
to include elevation using (2.85). For distant clusters it can be assumed that
the azimuthal extension will be much larger than the extension in elevation
(a group of buildings seen from a distance is generally quite wide but not so
high). In that case the flat world approximation is quite usefull.

In Section 2.2 we defined the angle of incidence θ as the angle between
the direction of movement and the direction of the scatterer. This can be
generalized so that the angle of incidence θ denotes the angle to the center
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of the flat cluster. The correlation and the Doppler spectrum then depends
on a = cos(θ+α), since the cluster has θ as angle of incidence. This imposes
a slight change of the mapping (2.78) to

fa(a) =
fα(| arccos a| − θ) + fα(−| arccos a| − θ)√

1− a2
[U(a+ 1)−U(a− 1)],

(2.90)
where we assume that fα(α), as defined in the interval [−π π], is repeated
with a period of 2π. This assumption is used throughout this Chapter and
makes the handling of the limits much easier.

Example 2.5 Scatterers spread on a line

Here the scatterers are assumed to be spread on a line along a wall, fol-
lowing a Gaussian distribution,

fx(x) =
1√

2πσ2
x

e
− x2

2σ2
x , (2.91)

where x denotes the coordinate along the wall. The wall is on the distance
L from the transceiver and oriented as in Figure 2.9, with the wall per-
pendicular to the direction of the antenna from the center of the cluster.
Let the attenuation depend only on the distance from the antenna to the

xL

θ

α

Figure 2.9: A scatter distribution along a wall.

center of the cluster L and not on the distance to the individual scatterers.
This is a valid approximation if σx � L. Furthermore assume that all the
scatterers reflect the same power and that the phases are random. The
angle α depends on the scatterer position through tanα = x/L and is thus
a function of a random variable. The PDF for the angular distribution can
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then be obtained by a transformation of the Gaussian PDF as

fα(α) =

 L√
2πσ2

x cos2 α
e
− L2

2σ2
x

tan2 α −π/2 < α ≤ π/2
0 otherwise,

(2.92)

For σ2
x/L � 1 only small angles will contribute to the power and we

can approximate cos2 α ≈ 1 and tan2 α ≈ α2. The angular distribution
for a small or distant wall of Gaussian distributed scatterers can thus be
approximated as

fα(α) ≈ L√
2πσ2

x

e
− L2

2σ2
x
α2

, (2.93)

which is a Gaussian distribution with variance σ2
x/L

2. When L increases
or σ2 decreases, the cluster is seen under a decreasing angle. In the limit
σ2
x/L

2 → 0, the cluster thus resembles a point source.

Example 2.6 A Gaussian two dimensional cluster

Here we consider a two dimensional cluster of scatterers, as in Figure 2.10,
with normal distribution of the x and y coordinates,

fxy(x, y) =
1

2πσ2
r

e
−x

2+y2

2σ2
r . (2.94)

The standard deviation σr of the spatial distribution of scatterers can be
seen as an effective radius of the cluster. Let the attenuation depend only
on the distance from the antenna to the center of the cluster L and not on
the distance to the individual scatterers. This assumption is well fulfilled
when σ2

r � L. The angular distribution is then obtained as [46]

fα(α) =
1

2π
e
− L2

2σ2
r

(
1 + erf

(
L cosα√

2σ2
r

))(
1 +

√
πL2

2σ2
r

cosαe
L2

2σ2
r

cos2 α

)
,

(2.95)
which is equivalent to the mathematical expression Rice [47] obtained for
finding the phase distribution of a sine wave in additive white Gaussian
noise. the function erf(·) is the error function for a Gaussian distribution.
Note that if we set L = 0 in (2.95), that is we stand in the middle of the
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Figure 2.10: A two dimensional Gaussian cluster of scatterers.

cluster, we obtain fα(α) = 1/2π, as then all directions are equally likely.
If σ2

r ≪ L then (2.95) can be approximated as

fα(α) ≈ L√
2πσ2

r

e
− L2

2σ2
r
α2

. (2.96)

Thus, for small or distant clusters of scatterers with spatially Gaussian
distribution, the azimuthal angular distribution is approximately Gaussian
with variance σ2

r/L
2. The angular distribution does thus mainly depend

on the one dimensional projection of the cluster, as in Example 2.5.

Both the one dimensional and the two dimensional clusters result in the
same azimuthal angular distribution when they are seen under a sufficiently
small angle. In both cases the mapping from spatial to angular distribution
depends on tanα ≈ α for small angles. The angular distribution will thus
be similar to the one dimensional projection of the spatial distribution for
distant or small clusters.

A mapping from the distribution fx(x) of the one dimensional projection
of a cluster, as in Figure 2.9, to the corresponding angular power distribution
can be derived. As the mapping from position to angle is α = arctan(x/L),
the angular distribution is in Appendix 2.B shown to be

fα(α) =
{

Lfx(L tanα)
cos2 α −π

2 ≤ α ≤
π
2

0 otherwise.
(2.97)
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The corresponding distribution for a = cosα can be obtained through (2.78).
If there is no elevation spread, then the Doppler spectrum can be directly
obtained using (2.97) in (2.78) and (2.79), otherwise the integral in (2.85)
has to be calculated.

2.4.5 Channel correlation due to a cluster

The correlation is given by the integral (2.77) which now also includes the
angle to the center of the cluster

rh(τ) =
∫ π

−π
fα(α)eωD cos(α+θ)τdα. (2.98)

There is a connection between how fast the correlation decays and the
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Figure 2.11: The Doppler spectrum for a Gaussian cluster along a line for
three different angles of incidence θ, 30◦, 60◦ and 90◦ (that is π/6, π/3 and
π/2 radians). The Jakes spectrum is plotted for comparison. The Doppler
shift is normalized to fD = ωD/2π = 1 Hz. The main bulk (90%) of the
power received from the cluster is here seen under an angle of 20◦ from the
transceiver. This effect is obtained with a Gaussian cluster, with standard
deviation σ = 10m, along a wall, 100m away from the transceiver.

predictability of the channel using a linear predictor, as will be evident
in Chapter 6. Using an optimal linear predictor with just one coefficient
the NMSE of a prediction τ time steps ahead of a noise free channel is
1− |rh(τ)|2/r2

h(0), where |rh(τ)| ≤ rh(0). This follows from equation (6.13)
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Figure 2.12: The absolute value of the correlation for the channel with the
Doppler spectrum given as in Figure 2.11.

in Section 6.2. When there is an angular distribution due to e.g. diffuse scat-
tering, the correlation decays with increasing correlation lag, as opposed to
a single reflector and the plane wave assumption, for which the magnitude of
the correlation is constant. In the case of omni-directional scattering, Jakes
model, the magnitude of the correlation of the channel reduces to half the
initial value when moving just a quarter of a wavelength (0.242 wavelengths).
The Gaussian clusters causing the Doppler spectra of Figure 2.11 are more
localized in space and thus result in a slower decay of the correlations, as
seen in Figure 2.12. Thus, a low number of contributing clusters, each highly
localized in space, result in slower decay of the channel correlation and a
higher predictability of the channel, than an omni-directional scattering en-
vironment. Broad-band channels where each tap is influenced by only a
small number of clusters is thus beneficial for the channel prediction.

The decay of the correlations, seen in Figure 2.12, for the channels corre-
sponding to a Gaussian cluster at different angles, have the familiar Gaussian
shape. In the following we will see how this can be the case.

Highly centered angular distributions

If we assume that the distribution is highly centered around α = 0 (cf.
Figure 2.9) and that it decays rapidly, then we can make some approxima-
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tions that lead to an analytical expression for the correlation of the channel
due to distant clusters of scatters. The integrand (2.98) depends partly on
cos(α + θ) which for small angles α can be approximated as

cos(α+ θ) = cosα cos θ − sinα sin θ ≈ cos θ − α sin θ. (2.99)

Thus if fα(α) has power close to α = 0 only and is virtually zero elsewhere
we can use (2.99) in (2.98) to approximate the correlation as

rh(τ) ≈
∫ π

−π
fα(α)e−ατωD sin θdα eτωD cos θ = Φα(τωD sin θ)eτωD cos θ,

(2.100)
which is the characteristic function4 Φα(ω) of fα(α) at ω = τωD sin θ, times
an oscillating component with the frequency given by the Doppler frequency
ωD cos θ.

From (2.6) we have that

τωD = τvk = dk, (2.101)

where d is the traveled distance, in a time interval τ and k is the wavenumber.
In the following we will express the correlation in terms of d instead of τ to
obtain a representation that is independent of the speed of the vehicle. The
correlation of the channel over distance is thus approximated as

rh(d) ≈ Φα(dk sin θ)edk cos θ. (2.102)

Correlation due to a Gaussian cluster

The Gaussian PDF for the angle in (2.92) fulfills the assumption of rapid
decay if σ2

x/L
2 is sufficiently small. Then we can approximate the angular

distribution as a Gaussian as in (2.93). The Fourier transform of a Gaussian
function is also Gaussian, so the characteristic function is

Φα(ω) =
∫ π

−π
fα(α)e−ωαdα

≈
∫ ∞
−∞

L√
2πσ2

x

e
− L2

2σ2
x
α2

eωαdα = e−
σ2
x

2L2 ω
2

. (2.103)

Insert (2.103) into (2.102) to obtain the approximate correlation function

rh(d) ≈ e−d
2k2 sin2 θσ2

x/2L
2
edk cos θ = ρ(dk/2π)2

edk cos θ, (2.104)
4The characteristic function of a random variable is the Fourier transform of the dis-

tribution, which here is Φα(ω) =
∫ π
−π fα(α)e−ωαdα
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where the damping coefficient ρ is given by

ρ = e−2π2 sin2 θσ2
x/L

2
. (2.105)

The damping coefficient ρ is normalized so that if the distance d is measured
in units of wavelengths, that is λ = 1 and k = 2π, then the damping is ρd

2
.

A distant Gaussian cluster of scatterers thus result in a correlation of the
channel that is a damped complex sinusoid with the frequency determined by
the cosine of the angle between the direction of motion and the center of
the cluster. The damping is a function of the squared distance, as measured
in wavelengths. The channel is thus highly correlated for a short distance,
whereas its correlation decays rapidly as the distance increases.

To evaluate the accuracy of the approximation for the correlation it is
compared to the true correlation for the channel, obtained by numerical
calculations using the angular distribution (2.92) for a number of angles θ.
This result is compared to the approximation given by (2.104). The angular
distribution has 90% of the power within an angle of 5◦. This corresponds to
a Gaussian cluster with a standard deviation of 20m at a distance of 750m.
As seen in Figure 2.13, the approximation in (2.104) is better for clusters
that appear on the side than for clusters that are close to right in front of
or behind the vehicle.

The approximation error increases not only with decreasing angle of
incidence but also with the angular width of the cluster. This is natural
as the approximation is derived under the assumption of a narrow angular
distribution. Let the width be defined as the angle under which 90% of the
power is seen. For a width of 10◦, the approximation error for the correlation
will have a magnitude that is around or below 1/100, for angles of incidence
that are larger than 30◦. The approximation (2.104) can of course be used
on clusters that are seen under a larger angle (width) than 10◦, but with
lower accuracy. If a correlation error on the order of 1/10 for θ > 30◦ is
acceptable, then the width may be up to 60◦.

The Cauchy cluster

Measurements of the local scattering environment, e.g. [48], suggest that
the angular distribution has a sharper peak than found in the Gaussian
distribution. In [48] a Laplacian distribution for the scatterers is proposed.
Another possible candidate is obtained if, instead of the Gaussian cluster
along the wall, we assume a more Cauchy like distribution. The channel
correlation will then take the familiar form of the correlation for an AR1
process, as seen in the following.
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Figure 2.13: The magnitude of the approximation error as a function of an-
gle of incidence θ and correlation lag d, using (2.104) denoted ra(d), instead
of the true channel covariance rh(d), for a Gaussian cluster of scatterers.
The angular distributions have 90% of the power within an angle of 5◦.

The probability density function for the Cauchy distribution is given by

fx(x) =
ς

π(ς2 + x2)
, (2.106)

where ς > 0 is a parameter governing the width of the distribution. The vari-
ance of a Cauchy distributed variable is infinite and, as seen in Figure 2.14,
the mapping of this distribution to an angular distribution has fatter tails
than the Gaussian distribution but it also has the desired narrow peak.

The corresponding angular distribution of scatterers, following from (2.106)
in (2.97), is

fα(α) =
Ls

π

1 + tan2 α

ς2 + L2 tan2 α
, (2.107)

where L is the distance to the cluster of scatterers. When ς � L this
probability density function decays quite rapidly with increasing angle α
and we can make an approximation of the angular PDF around α = 0,
setting tanα = α,

fα(α) ≈ ς

πL
· 1
ς2/L2 + α2

, (2.108)
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Figure 2.14: The angular distribution for a Gaussian and a Cauchy cluster.
Both angular distributions have 90% of the power within an angle of 5◦, but
the angular spreads (the standard deviation for the angular distribution)
are 1.5◦ and 5.6◦ for the Gaussian and Cauchy clusters, respectively. The
large angular spread for the Cauchy cluster is due to the fat tails in the
angular distribution.

which is also a Cauchy distribution. The characteristic function of this PDF
(the Fourier transform), is an exponential damped function,

Φα(ω) =
∫ π

−π
fα(α)e−ωαdα

≈
∫ ∞
−∞

ς

πL
· 1
ς2/L2 + α2

eωαdα = e−|ω|ς/L. (2.109)

The correlation function can be obtained using (2.100) as

rh(d) ≈ e−|dk sin θ|ς/Ledk cos θ = ρ|dk|/2πedk cos θ, (2.110)

where the damping factor ρ is given by

ρ = e−2π| sin θ|ς/L. (2.111)

The damping coefficient ρ is normalized so that if the distance d is measured
in units of wavelengths, that is λ = 1 and k = 2π, then the damping is ρ|d|.
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The Cauchy cluster and the AR1-process

The correlation function for the channel due to a Cauchy distributed dis-
tant cluster of scatterers is recognized as the correlation function for a dis-
crete time autoregressive system. A model for a sampled channel h(t), t =
[0, 1, . . . [, with a sampling rate resulting in m samples per traveled wave-
length (d = t/m), is thus

h(t) =
(
ρe2π cos θ

)1/m
h(t− 1) + w(t). (2.112)

where w(t) is an innovation noise with zero mean, that adds power to a flat
fading channel at the same rate as it is dissipated due to the damping.5 This
AR1-process has a pole in

(
ρe2π cos θ

)1/m and if the noise w(n) is white, then
the correlation function of the channel is rh(n) = ρ|t/m|e2π(t/m) cos θ which
corresponds to (2.110) as the distance is measured in wavelengths. The
AR1 process is thus pertinent for modeling the temporal/spatial effect of a
clusters of scatterers with Cauchy like angular distribution on the channel.

The correlation due to the Gaussian cluster in equation (2.104) does
not fit directly with the correlation of an AR1-process, as the damping is a
function of the squared distance. Higher order ARMA-models can be used
to approximate this behavior. If a model for a few wavelengths is sufficient,
then an AR1-model can be used for the Gaussian cluster too, as seen in
Figure 2.16.

Evaluation of approximation accuracy

To evaluate the accuracy of the approximation for the correlation function,
it is compared to the true correlation for the channel, obtained by numerical
calculations using the angular distribution (2.107) for a number of angles θ.
This result is compared to the approximation given by (2.110). The angular
distribution of (2.107) with ς/L =0.006 has 90% of the power within an angle
of 5◦, just as in the evaluation of the Gaussian cluster. The approximation
for the Cauchy cluster is not as good as for the Gaussian cluster but it is still
sufficient to motivate the use of AR-processes to model the effect of distant
clusters of scatterers on the channel.

The damping is faster for the Gaussian cluster as compares to the Cauchy
cluster, as seen in Figure 2.16 where the real part of the correlation function
is plotted for a cluster at θ =60◦. This is because the Cauchy cluster, in spite

5To ensure that the model of the channel is band-limited a colored noise with power
only in the range given by plus/minus the maximum Doppler shift can be used.
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Figure 2.15: The magnitude of the approximation error as a function of an-
gle of incidence θ and correlation lag d, using (2.110) denoted ra(d), instead
of the true channel covariance rh(d), for a Cauchy cluster of scatterers. The
angular distributions have 90% of the power within an angle of 5◦.
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Figure 2.16: The real part of the channel correlation for a scenario with a
Gaussian or a Cauchy cluster of scatterers at an angle of incidence of 60◦.
The × and + are the correlation according to the approximations (2.104)
and (2.110) respectively. Up to a few wavelengths both correlation functions
can be approximated by the correlation for an AR1-process.
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of the fat tails of the distribution, result in an angular distribution where the
peak is narrower than for the Gaussian counterpart. The cluster is thus more
like a point source, that does not have a damping in the correlation at all.
For a few wavelengths there is hardly any difference between the correlation
function for the channel due to the Gaussian and the Cauchy cluster. The
approximations (2.104) and (2.110) follows the true correlations closely over
the depicted range.

A number of clusters

There exists a mapping from the spatial distribution of scatterers, to the
angular distribution of received power, as was exemplified above for the
flat world scenario. In the environment there can be a large number of
clusters, all contributing to the total received power. If we assume that the
contributions from the different clusters of scatterers are uncorrelated, then
we can write the correlation as a sum of the contributions from the different
cluster, cf. (2.68),

rh(τ) =
∑
n

pn

∫
γ
fn,γ(γ)eωD cos γτdγ, (2.113)

where pk is the average power contribution from cluster k and fk,γ(γ) is the
angular distribution of the cluster seen from the receiver. Each cluster can
thus have an unique azimuthal and elevation angular spread. A reflector, or a
direct path, that does not have any angular spread has a angular distribution
which is a Dirac pulse at the angle of arrival.

The Doppler spectrum will thus also consist of a weighted sum of the
individual Doppler spectra from the clusters (illustrated in Figure 2.17),

Rh(ω) =
∑
n

pn
2π
ωD

fn,c

(
ω

ωD

)
, (2.114)

where fn,c(·) is the distribution for c = cos γ for the n:th cluster.

2.4.6 The sampled channel

The continuous impulse response was discretized as a FIR-filter in Sec-
tion 2.3, equation (2.28), where the coefficients of the discrete impulse re-
sponse are changing continuously. We can not observe the channel directly
but it can be estimated from the received data as will be described in Chap-
ter 4. What is obtained from the channel estimation are snapshots of the
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The angular distribution of power, fα(α) The Doppler spectrum, Rh(ω)

Figure 2.17: The angular distribution of power and the corresponding
Doppler spectrum for 16 clusters with different powers. The grey dots
is the cluster of scatterers, resulting in the power around angle θ in fα(α)
(to the left) and the corresponding gray power in the Doppler spectrum (to
the right).

impulse response at discrete time instances. Thus, the channel is sampled
not only in delay of the impulse response, but also in time. If the dynam-
ics of the channel is assumed to be band-limited, as in (2.76), then the
channel only has to be sampled with twice the Doppler frequency. Due to
the nonlinearities discussed in Section 2.3, causing a time varying angular
power distribution, the channel will not be perfectly band-limited, which
requires a higher sampling rate. Another problem, also calling for a higher
sampling rate of the channel, is the estimation error arising in the channel
identification. The reason is that noise reduction becomes simpler if the
channel is oversampled with respect to the dynamics of the channel, as seen
in Chapter 5.

In the rest of the thesis we will consider discrete time models for the
channel, for which we shall exploit the findings on clusters properties pre-
sented earlier.
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2.5 ARMA Modeling of the Channel

The Doppler spectrum that is observed in an environment where there are
clusters of scatterers is continuous. When the number of scatterers and
reflectors within the clusters is high, the contribution from each cluster can
be modeled as a narrow-band filtered noise, as was discussed in the beginning
of Section 2.4. In the Doppler spectrum there will be a peak with a certain
width and falloff depending on the angular power distribution and on the
direction of movement of the transceiver.

In this section we consider the feasibility to fit low order AR and ARMA
models to give a similar spectrum as a cluster. The simplest possible model
that results in a clear peak in the frequency domain is an AR filter with one
complex pole. From the results above, e.g. equation (2.110), we know that
the effect of one cluster of scatterers can be modeled by such an AR1-process.

A sum of damped oscillators

A conventional model for a fading tap is based on N point reflectors and
scatterers, as in equation (2.65). Each channel tap may then be modeled by
a weighted sum of the outputs from N complex oscillators, which have slowly
varying frequencies (Doppler shifts) [18], [21]. A main result of Section 2.4
is to introduce damping into this description. A one pole AR filter per
cluster, as in (2.112), corresponds to a linear time-invariant model that is
valid for short intervals and that is well suited for an environment where the
clusters consist of Cauchy distributed scatterers. Consequently, N clusters
will thus correspond to a sum of N damped oscillators. Let xn(t) denote the
contribution to the tap of the channel due to the n:th cluster. Using the
model (2.112) for xn(t),

xn(t) = ρne
2π cos θn/mxn(t− 1) + wn(t). (2.115)

Here, m is the number of samples per traveled wavelength, θn is an average
angle of incidence for ray n and 0 ≤ ρn ≤ 1 introduces damping. The
damping is due to both averaging over slowly time-varying frequencies, as
well as the presence of continuous scatterers. Uncertainties in the modeling
are represented by wn(t), which are all band-limited and have zero means,
since xn(t) and h(t) are band-limited, but wn(t) are otherwise unknown.
With the contribution from cluster n given as in (2.115), the tap is obtained
as

h(t) =
N∑
n=1

αnxn(t). (2.116)
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The complex weighting αn includes the path loss and the phase. The sum
over the contributions for the clusters can thus be expressed as a sum of N
AR1-processes, which becomes

h(t) =
N∑
n=1

αn

1− q−1ρne2π cos θn/m
wn(t), (2.117)

Equation (2.117) can be expressed as an autoregressive part in h(t) and a
moving average part for the innovations,

[
N∏
n=1

(
1− q−1ρneωn

)]
h(t) =

N∑
n=1

∏
l 6=n

(
1− q−1ρleωl

)αnwn(t), (2.118)

where ωn = 2π cos θn/m.

ARMA modeling

The sum of stochastic processes in (2.117) and (2.118) can be reformulated
as one process, with the same second order moments. This operation is
called spectral factorization, and it results in an ARMA innovation model
of the form

h(t) =
1 + c1q

−1 + . . . + cnCq
−nC

1 + d1q−1 + . . .+ dnDq
−nD w(t) ∆=

C(q−1)
D(q−1)

w(t) (2.119)

where nD = N and nC = N −1 and where w(t) is a band-limited zero mean
noise with variance σ2

w. The filter C(q−1)/D(q−1) is a stable minimum
phase model of the dynamics of the channel. The AR part is given as
in (2.118) with D(q−1) =

∏N
n=1

(
1− q−1ρneωn

)
, with one pole per cluster.

The polynomial C(q−1) is a result of the combination of AR-processes.
If the damping factors are close to one, that is the poles are close to the

unit circle, then the autoregressive part of the dynamics will dominate the
model (2.119). Thus, even if the correct model is ARMA, an AR model
might offer several advantages and a sufficiently good fit to the channel
dynamics. As it generally is harder to estimate zeros as compared to poles,
the AR model has been preferred in many channel predictors [22],[27]. In
this thesis we will consider both AR and ARMA models for the channel, in
the design of the channel predictors.
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Time varying models

When the transceiver moves, the angle towards any given cluster changes.
This result in a corresponding change of the position of the pole in the AR1
model for the corresponding contribution to the channel. This is a slow pro-
cess, as compared to the channel dynamics, when the clusters are distant.
However, for near by scatterers this effect can cause problems, as we saw
in Section 2.3. In either case the ARMA model has to be updated, either
iteratively or on a block basis. How often the model has to be re-estimated
depends on how fast the angles towards the contributing scatterers change.
In an environment where the power contribution from distant clusters dom-
inates, the model can stay valid for several meters.

2.6 Conclusion and Implications for Predictor De-

sign

• The linearized model (2.49) where a tap hm(t) in a mobile radio chan-
nel is described as a sum of weighted complex sinusoids,

hm(t) =
N∑
n=1

αn,me
ωDnt, (2.120)

is a valid approximation of the channel dynamics in an environment
with plane waves and linear motion with constant velocity of the
transceiver. The plane wave approximation is valid when the reflectors
and scatterers are distant.

According to this model, the tap is perfectly predictable by a linear
FIR-predictor with N coefficients. Such predictor structures is thus of
interest.

• The extended model (2.32)

hm(t) =
N∑
n=1

αn,m(t)eφn(t), (2.121)

with a quadratic term in the phase (2.37)

φn(t) ≈ ωDnt+
krMS
n

2

(
vt

rMS
n

)2

sin2 θn, (2.122)

should be used when the waves are spherical or cylindrical. This is the
case when the contributing scatterers are close to the receiver.
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– This model includes the changing angle from the transceiver to
the secondary source and thus increase the valid range for the
model as compared to (2.120).

– The quadratic term in the phase also appears when driving in
curves and other situations where the assumptions of linear mo-
tion and constant velocity are invalid.

– When the time interval Tπ/3 defined by (2.57) is small, in rela-
tion to how often the channel model is updated, the linearized
model (2.120) is insufficient. The time interval Tπ/3 thus indi-
cates if the quadratic term of the phase is needed or not.

– This extended model motivates the use of adaptive predictors or
block based predictors, that frequently update their coefficients,
to follow the changing dynamics of the channel.

• When the number of contributing paths N is very large, it is conve-
nient to make a statistical description of the channel instead of the
deterministic description used in (2.120).

– A group of buildings or other objects that reflect or scatter radio
waves, can be seen as a cluster of reflectors or scatterers. The
effect on the channel of such a cluster can be modeled as a narrow-
band filtered Gaussian noise.

– Distant clusters of scatterers or reflectors seen under a small angle
result in channels that can be approximated as sums of damped
complex sinusoids with an added innovation. The frequency of
the oscillation depends on the angle towards the center of the
cluster whereas the damping, which is not necessarily exponen-
tial, depends on the shape of the cluster.

– A Cauchy like cluster of scatterers result in a sharper peak in the
angular distribution than a Gaussian cluster. The corresponding
channel correlation is approximately the same as for an AR1-
process.

– When the elevation distribution of the clusters are taken into ac-
count the corresponding peaks in the Doppler spectrum generally
becomes wider and lower, as compared to a model assuming a flat
world.

• The statistical model, using the plane wave approximation, indicates
that a distant cluster can be modeled as a damped complex sinusoid,
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instead as in (2.120) where the contribution from a source is modeled
as a single complex sinusoid.

– Damped sinusoids can be modeled as stochastic AR1-processes
if the damping is exponential, as for the distant Cauchy cluster.
An AR1 process is a good model of the correlation function over
several wavelengths also for Gaussian clusters.

– A sum of stochastic AR1-processes can, by spectral factorization,
be modeled as a single ARMA-process with the same first and sec-
ond order statistics. ARMA-models thus describe the dynamics
of a mobile radio channel with contributions from many clusters.

– When the poles of the ARMA-model for the channel are close to
the unit circle, an AR-model can render a good approximation to
the dynamics.

– This motivates the use of predictors based on AR or ARMA-
models for the dynamics of the taps.

– The linear ARMA or AR-models should be time-varying to en-
compass the changing directions towards the contributing clusters
and other changes of the environment.

The statistical model with clusters of reflectors/scatterers resulting in
an ARMA-model of the dynamics of a tap, is a more realistic descrip-
tion of the mobile radio environment than a sinusoidal model that is
based on a finite number of scatterers/reflectors. Perfect predictabil-
ity can not be expected for ARMA processes with slowly time-varying
coefficients.
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2.A The Required Size of a Reflector

To classify an object as a reflector or scatterer we need the concept of Fresnel
zones. The first Fresnel zone is defined as the ellipse where the path length

BS

MS

2
h = sin

β

r

MS
r

BS βL

Virtual slit

Front of  building

Figure 2.18: A building of width L reflects the waves from the antenna.
The angle of incidence is β. The ellipse show the first Fresnel zone. The
building acts as a slit of width L sinβ for the virtual reflected source.

from the mirror image via a point on the ellipse exceeds the direct path from
the mirrored image to the mobile station by λ/2. The base station is seen
reflected in the building. A reflector can be viewed as a virtual slit for the
mirror image as it is only inside the slit (the reflector) the mirror image is
seen. If the slit opening allows at least the whole first Fresnel zone through,
the object acts as a reflector (see Figure 2.18). The direct path is the path
from the virtual mirror source to the receiver, which is equal the sum of the
distance from the base station rBS (or the secondary source) to the reflecting
object and the distance from the object to the mobile station rMS .

The difference in path length between the direct path and a path that
passes the edge of the virtual slit is given by [36]

∆ ≈ h2

2

(
rBS + rMS

rBSrMS

)
. (2.123)

With ∆ = λ/2 the slit let the whole first Fresnel zone through. The width
of the object L, thus has to be large enough to let the first Fresnel zone
through, for the building to act as a reflector. The slit is assumed to be
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tilted at an angle β, the angle of incidence, and the effective width of the
slit is thus L sin β. The smallest size for an object to be considered as a
reflector is

L >
2

sin β

√
rBS + rMS

rBSrMS

λ. (2.124)

Objects smaller than this limit will cause noticeable diffraction, spreading
energy not only in the angle of reflection. The diffraction thus causes a
similar effect as a scatterer.

Example 2.7

Consider a scenario with an object acting as a reflector in the nth path.
The carrier frequency is 1880 MHz (the wavelength λ is thus 16 cm) and
the object is on a distance of 490 m from the base station and only 10 m
from the mobile station. This object can be no smaller then 2.5 m to act
as a reflector (that is for the most beneficial angle β = π/2 or 90◦). For an
angle of reflection of 45◦ the object has to be at least 3.5 m wide to act as
a reflector. An object further away from the mobile, 400 m from the base
station and 100 m away from the mobile station, at an angle of 45◦ would
have to be at least 10 m wide. Most objects along a road, as cars, are
thus too small to act as reflectors. A building is often large enough to be
considered as a reflector but most façades are not homogeneous reflecting
surfaces. This causes a blend of reflection, diffraction and scattering from
buildings.

2.B The Angular PDF from the Spatial PDF for

a Linear Cluster

The mapping from the spatial distribution fx(x) of a one-dimensional clus-
ter to the angular power distribution fα(α) for the cluster seen from the
transceiver is derived in the following.

Here the scatterers are assumed to be spread on a line along a wall,
following the distribution fx(x), where x denotes the coordinate along the
wall. The wall is on the distance L from the transceiver and oriented as in
Figure 2.9, with the wall perpendicular to a line from the antenna to the
center of the cluster.
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Let the attenuation depend only on the distance from the antenna to the
center of the cluster L and not on the distance to the individual scatterers.
This is a valid approximation if the standard deviation for the cluster is much
smaller than the distance to the cluster (σx � L). Furthermore assume that
all the scatterers reflect the same power and that the phases are random.
The transformation from position to angle is

α = g(x) = arctan
x

L
(2.125)

x = L tanα. (2.126)

The Jacobian for the transformation is

g′(x) =
∂α

∂x
=

1
L
· 1

1 + x2/L2
. (2.127)

Evaluate the Jacobian in x = L tanα,

g′(L tanα) =
1
L
· 1

1 + tan2 α
=

cos2 α

L
. (2.128)

The transformation from the spatial PDF to the angular PDF is obtained
as

fα(α) =
fx(x)
|g′(x)|

∣∣∣∣
x=L tanα

=
Lfx(L tanα)

cos2 α
. (2.129)

Distant cluster

For a distant cluster seen under a small angle, the main power contribution
will be for angles where α is close to zero. Then tanα ≈ α and cos2 α ≈ 1
which applied to (2.129) lead to an approximate expression for the angular
PDF

fα(α) ≈ Lfx(Lα), (2.130)

which is a scaled version of the spatial distribution.



Chapter 3

Measurement Data

To be able to verify the performance of the channel prediction algorithms
proposed in this thesis, real measured channel impulse responses are needed.
We have data from two measurement campaigns at our disposal. One was
performed in urban Stockholm, which is a notorious mobile radio environ-
ment1 and the other in the suburb Kista, just outside of Stockholm.

The data consist of snapshots of the channel impulse response for a few
meters at 37 different locations. The snapshots are updated at 9.1kHz,
which result in a fast sampled channel. These short data sets are ideal for
evaluating the performance of block prediction methods, as a lot of different
measurement locations and radio environments are represented in the ma-
terial, while each set is too short to perform adaptive prediction. The high
channel sampling rate is also a condition for the noise reduction presented
in Chapter 5 to provide a large gain in predictability.

The data base consist of a number of channel-sounder measurements at
different locations. The channel-sounder is a correlation channel-sounder,
transmitting a sequence with good correlation properties to provide the best
possible estimated channel impulse responses. The system is shown in Fig-
ure 3.1. The sequence s(n) is sent through a transmitter over the mobile
radio channel h(n) to the receiver, where the signal y(n) is received. While
no co-channel interference is present in the measurements, some noise v(n)
from the environment and the equipment corrupts the received signal.

1The city is situated on a large number of island with free radio propagation paths
over the water, resulting in strong contributions to the channel impulse response at large
delays.

67
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v(n)

y(n)h(n) RECEIVERTRANSMITTERs(n) Σ

Figure 3.1: Channel sounder. The air interface, h(t), is modeled as a time
varying FIR-filter.

Measurements
Wideband radio channel measurements were collected at 1880 MHz, at dis-
tances of 200 to 2000 m from the base station antenna placed on the roof of a
high building. The mobile antenna was placed on a car driving in urban and
suburban areas, mostly without line of sight. The vehicle velocity varied be-
tween 30 and 90 km/h. In total, 37 usable measurement runs were recorded
at different positions. The measurements consist of 156.4 ms long record-
ings of the received signal at each measurement location. The transmitted
signal consisted of 1430 repetitions of a sequence of length 109.4 µs. As
the baseband sampling rate of the receiver was 6.4 MHz, each transmitted
sequence of 109.4 µs resulted in 700 recorded samples.

Channel sampling
The impulse response of the channel is modeled by an FIR-filter, with param-
eters estimated by a block based least squares (LS) method. In Section 4.2
the procedure to identify FIR-channels from the measurements will be de-
scribed in more detail. For each repetition of the transmitted sequence, that
is for a block of 700 received samples, a new channel is identified, result-
ing in 1430 consecutive impulse responses at each measurement location.
The channel sampling frequency is thus 6.4/700 MHz ≈ 9.1 kHz. Since the
highest Doppler frequency in the measurements, that occurs for the maxi-
mal velocities around 90 km/h, is about 160 Hz (fD = fcv/c), the channel
sampling frequency is sufficient to avoid aliasing of the Doppler spectrum.
Compared to the maximal Doppler frequency the channel is oversampled by
a factor of 28.

The block identification of the channel coefficients introduces an error,
due to the time variation of the parameters of the channel during the iden-
tification interval, and an error due to the measurement noise. The size of
the error due to time variation of the estimated coefficients, depends on the
time-frequency (TF) product between the length of the identification inter-
val (the block) and the Doppler frequency. This effect will be analyzed in
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more detail in Section 4.3. With the chosen block-length, the bias will be
negligible for these measurements.

The time-span covered by the FIR-filter has to encompass all contribut-
ing paths. It was found that 120 taps, thus a time span of 18.75 µs, was
sufficient. That is, only paths shorter than 5.6 km were found to contribute
to the measurements. Note that 700 recorded samples are thus used to
identify 120 complex parameters in the FIR-model.

An identification procedure using s(n) and y(n) in Figure 3.1 would re-
sult in an estimate of the channel convolved with the transmitter and receiver
filters. Under the condition that the transmitter and receiver are linear and
that the channel is slowly time varying, the order of the components can be
interchanged as in Figure 3.2. To obtain a reference signal for identification

TRANSMITTER RECEIVER h(n)

RECEIVER

Σ y(n)

v(n)

s(n)
x(n)

Figure 3.2: Equivalent channel sounding system. Used as a model in iden-
tification of the channel, h(n).

of the impulse responses, a back-to-back measurement is performed. The
transmitted sequence, s(n), is then sent through the transmitter directly
connected to the receiver with a cable, as in Figure 3.3. On the receiver
side the 700 samples of reference signal, x(n), is obtained for the system
without the air-interface. By using the back-to-back measurement for iden-
tification we avoid identifying the transmitter and receiver filters and obtain
an estimate of the impulse response of the air interface.

RECEIVER x(n)s(n) TRANSMITTER

Figure 3.3: Back-to-back measurement on the channel sounder to obtain
the reference signal x(n).
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Span of scales involved

The most important properties of the measurement are summarized in the
Table 3.1. Note the large difference in scale. The entries of Table 3.1 are

Parameter Temporal measure Spatial structure
Carrier frequency 1880 MHz 15.95 cm
Baseband sampling rate 6.4 MHz 46.6 m
Impulse response length 18.75 µs 5.6 km
Max delay spread 3 µs 900 m
Channel update rate 109µs 0.9-2.7 mm
Length of measurement 156 ms 1.3-3.9 m

Table 3.1: Table of the parameters governing the measurements of the
impulse responses. The vehicle velocity is 30-90 km/h (roughly 8-25 m/s).
An interval in the spatial properties refers to the different vehicle velocities.

explained in the following.

• The carrier frequency is 1880 MHz and the wavelength is 15.9 cm. The
waves will thus interact with objects larger than ≈10 cm.

• The baseband sampling rate is 6.4 MHz. That is, we obtain a sample
every 0.156 µs, which corresponds to a spatial resolution of 46.6 m.
Thus, the main contribution to each tap comes from reflections with
path distances that differ less than 50 m. Thus, the geometry on the
10 m scale is involved.

• The impulse response length is 18.75 µs. This allows differences in
path-lengths from the transmitter to the receiver of 5.6 km. Thus,
the estimated impulse response accounts for reflections over the 103 m
scale.

• The channel update rate is 109 µs which corresponds to a new estimate
of the impulse response every 0.9-2.7 mm at vehicle velocities in the
range 30-90 km/h. That is, we obtain at least 60 channel samples
per wavelength. Thus we are working on the 10−3 m scale. With
such small intervals, an assumption of stationarity over the channel
estimation interval is well justified.



Chapter 4

Channel Estimation

4.1 Introduction

The mobile radio channel, as described in Chapter 2, has to be estimated
in some manner to be made available for the receiver. In a communication
system the estimation is generally performed using the received signal and
applying some knowledge about the transmitted sequence of symbols. This
chapter will mainly discuss least squares estimation, the most basic block
method for channel estimation using training symbols. Block based esti-
mation methods use a batch of received symbols to estimate the average
channel in an interval where the channel is treated as time invariant. We
shall call this a sample or snapshot of the channel obtained from each es-
timation interval. The continuous impulse response of the channel is thus
sampled, not only in delay to form a discrete FIR-channel but also in time,
resulting in snapshots of the time varying channel. The estimated samples
of the channel will be corrupted by an estimation error that depends on the
measurement noise, the transmitted symbols, the properties of the channel
and the estimation algorithm.

In Section 4.2 some properties of the block based least squares method
are recapitulated. Important for the noise reduction of Chapter 5, is that
the estimation error results in a noise floor in the power delay profile, which
can be used to obtain estimates of the variance of the estimation error.
The LS channel estimation procedure is exemplified using the fast sampled
measurement data from the database described in Chapter 3.

The error in the estimation, due to measurement noise and the deviation
from a time invariant channel in the estimation interval, is analyzed in Sec-
tion 4.3 for least squares estimation of a Rayleigh fading channel with Jakes

71
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spectrum. By a second order Taylor expansion the estimation error due to
the time variation is approximated as the sum of a bias and an excess error,
caused by the curvature and linear change of the channel, respectively. The
resulting expressions can be used to obtain limits for how long estimation
intervals that are reasonable to use under given conditions.

4.2 Identification Procedure

4.2.1 Channel model

In this work, the radio channel is described by a discrete time transfer func-
tion, i.e., a discrete time impulse response. This impulse response, denoted
{hk(n)}∞k=0 or just {hk(n)}, is time varying and the goal of the identifica-
tion procedure is to estimate the time-dependent parameters in {hk(n)} as
accurately as possible. The received signal is described as a convolution be-
tween the transmitted (pulse-shaped) signal, x(n), and the impulse response
{hk(n)} corrupted by an additive noise, v(n):

y(n) =
∞∑
k=0

hk(n)x(n− k) + v(n). (4.1)

Over short time intervals (a batch of data), the time-varying channel can
be approximately described by a time invariant impulse response. A further
simplification is to assume that the transfer function, {hk(n)}, can be de-
scribed by a time invariant finite impulse response (FIR) model of length
M (following the result in (2.28)), in each time interval. The model (4.1) is
then modified to

y(n) =
M−1∑
k=0

hkx(n− k) + v(n), (4.2)

where M has to be chosen large enough to encompass all significant con-
tributing paths. By expressing (4.2) using in the unit delay operator q−1

(q−1x(n) = x(n− 1)), we obtain

y(n) = H(q−1)x(n) + v(n), (4.3)

where H(q−1) =
∑

k hkq
−k. This model is a valid approximation for time

segments that are short related to the channel variation. In Section 4.3
the effect of the time variation within the interval is investigated. In the
following, batches of N data samples are used to obtain a description of the
impulse response {hk} for each batch.
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For a white data sequence {x(n)} the variance of the received signal is

σ2
y = E{|y(n)|2} = σ2

x

M−1∑
k=0

|hk|2 + σ2
v . (4.4)

The instantaneous SNR for one batch of data is thus

γ =
σ2
x

∑M−1
k=0 |hk|2
σ2
v

. (4.5)

The average SNR is obtained as

γ̄ =
σ2
x

∑M−1
k=0 σ2

hk

σ2
v

, (4.6)

where σ2
hk

is the variance of tap k.

4.2.2 Empirical transfer function estimate

The convolution in (4.2) can be expressed as a multiplication in the fre-
quency domain, i.e.,

Y (ω) = H(ω)X(ω) + V (ω). (4.7)

The empirical transfer function estimate (ETFE) of H(ω) is then simply
given as [49]

Ĥ(ω) = Y (ω)/X(ω) (4.8)

and the impulse response estimate ĥk is given by the inverse Fourier trans-
form of Ĥ(ω). This method for identification in the frequency domain usu-
ally gives results with unnecessarily high variance but due to its simplicity,
it is still worth attention.

The variance in the frequency domain of an estimated transfer function
will depend on signal to noise ratio in the frequency domain [50]. The power
spectrum of the reference signal (which can be obtained from the back-
to-back measurement), as seen in Figure 4.1, shows that the transmitted
signal in the measurements does not excite frequencies beyond 2.5 MHz
from the center frequency. This will result in low accuracy of the estimated
channel impulse response for the highest frequencies, regardless of which
identification method is chosen.
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Figure 4.1: Normalized power spectrum of the transmitted signal |X(ω)|
and the average normalized power spectrum of the received signals at one
measurement location (real data).

4.2.3 The least squares method

The use of the empirical transfer function estimate would cause an unnec-
essarily high variance on the estimated parameters. The problem is partic-
ularly apparent for channel taps with low amplitudes. To obtain a better
overall estimate of the channels, a least squares estimator [49] will be used.

Express equation (4.2) in vector form as

y(n) = xH(n)h + v(n), (4.9)

where
x(n) = [x(n) x(n− 1) . . . x(n−M + 1)]H (4.10)

is the vector of transmitted data and

h = [h0 h1 . . . hM−1]T (4.11)

is the parameter vector that is assumed time invariant in the estimation in-
terval and v(n) is a noise term assumed to have zero mean and variance σ2

v .
The total number of observations in one batch is N and the number of un-
known parameters in h is M . Form the Toeplitz matrix for the transmitted
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data 1

X = [x(1) . . . x(N)]H (4.12)

and a received data vector

y = [y(1) . . . y(N)]T . (4.13)

Similarly let v denote the vector of the N noise samples,

v = [v(1) . . . v(N)]T . (4.14)

The Equation (4.9) can then for n = 1 . . . N be formulated as

y = Xh + v (4.15)

and the off-line LS estimate of the parameters of the channel is

ĥ = X†y = h + X†v, (4.16)

or, by denoting the estimation error by

e = X†v, (4.17)

ĥ = h + e. (4.18)

Here, X† = (XHX)−1XH denotes the Moore-Penrose inverse of the matrix
X and (·)H denotes complex conjugate transpose.2

Under the assumption that the noise v(n) in (4.9) is zero mean, inde-
pendent of the term xH(n)h and that h is time invariant, then E{ĥ} = h.
The covariance matrix of the estimation error e is then obtained as

Re = E{eeH} = E{(ĥ− h)(ĥ− h)H}
= E{X†vvHX†H} = X†RvX†H , (4.19)

where the noise covariance matrix, Rv, is defined as

Rv = E{vvH}. (4.20)
1There will be samples with negative time indices in X, samples that not necessarily

are available. If these samples are unknown, then the problem can be circumvented by
setting them to zero in X. The matrix can also be truncated to X = [x(M) . . .x(N)],
which only consist of known samples. Then y has to be truncated in the same manner.

2The vector XHy/N is an estimate of the cross-covariance vector, ryx, and XHX/N =
R̂x is the sample auto-covariance matrix of x(n). The LS solution in (4.16) is thus nothing
but the Wiener-Hopf equations with this particular choice of estimators for the covariances.
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The correlation matrix for the estimated channel, obtained as the expecta-
tion over noise realizations

E{ĥĥH} = hhH + X†RvX†H , (4.21)

is of interest in the following discussion about the power delay profile.
When the noise is white, the noise covariance has the simple form Rv =

σ2
vI and the covariance of the estimation error in equation (4.19) reduces to

Re = σ2
v(X

HX)−1. (4.22)

The estimation error will be studied further in Section 4.3.

4.2.4 Power delay profile estimates

In the previous section the channel h was treated as a deterministic time
invariant vector in the estimation interval. When consecutive estimation
intervals are considered, it is beneficial to treat each snapshot of the channel
h(t), where t denotes the discrete time index for the snapshots of the channel,
as a realization of a stochastic process. The process is assumed to be ergodic.
Time averages and expectation over realizations will thus be the same.

The power delay profile (PDP) represents the distribution of the received
power over delays. It is thus the expectation of the squared amplitude of the
taps at one location. Through the PDP the effective length of the channel
can be observed and it can also be used to measure the delay spread. Here
we will use the PDP to obtain an estimate of the variance of the estimated
parameters of the channel, where estimation errors will act as noise on the
sequence of channel estimates.

The PDP is estimated as the time average over one measurement loca-
tion of the power in the estimated taps [|ĥ0(t)|2 . . . |ĥM−1(t)|2]. Assume the
channel tap to be time invariant over the estimation window of N received
data samples and assume the noise to be independent of the regressors. The
expected value for the power in one estimated tap, say tap k, estimated by
the LS procedure from data corrupted by white noise is then obtained by
using (4.22) in (4.21),

E{|ĥk(t)|2} = E{|hk(t)|2}+ σ2
v [(X

HX)−1]kk, (4.23)

where the expectation is taken both over noise realizations and channel
realizations. Here (·)kk denotes the element on row and column k and the
variance of the white noise is σ2

v . As the estimated PDP is formed through
time averaging of ĥ(t), it will have a bias given by the second term in (4.23).
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This bias in the estimated PDF can be seen as a noise floor nf , at those
channel taps that in reality are zero,

nf = σ2
v diag[(XHX)−1], (4.24)

where diag(·) forms a column vector from the diagonal elements of a matrix.
Thus, if hk(t) = 0,∀t, then E{|ĥk(t)|2} = σ2

v [(XHX)−1]kk. The noise floor
for tap k will be given by the kth element of the noise floor vector nf . We
cannot expect to obtain any reliable estimates of the taps close to the noise
floor. It could even be beneficial for the total accuracy to exclude those
delays from the estimation procedure [51].

Verification of the noise floor for white measurement noise

To verify that the level of the noise floor, and thus the variance of the
estimation error, is as expected, an estimated PDP from a measurement is
compared to a Monte Carlo simulated profile. Here we use a dB scale with
an arbitrary reference to display the measured data. This way of presenting
measured data will be used throughout the thesis.

The simulated channel has a PDP formed after a pattern given by the
estimated PDP. Some taps in the simulated channel should carry no signal
power, so values in the PDP pattern under a certain threshold, which is
chosen in an ad hoc way, is set to zero. The square root of the estimated
PDP, with values under a threshold of -101.4 dB set to zero, is thus used
as a pattern for the simulated channel parameters. The threshold level is
chosen a little bit above the observed noise-floor of the estimated PDP in
Figure 4.2, to include all the visible peaks from the estimated PDP into the
pattern.

For each Monte Carlo trial, the taps in the channel are generated as the
pattern PDP multiplied by normal distributed random complex numbers
with zero mean and variance one. The generated channels will then have
independent taps and on average the desired PDP. Each Monte Carlo trial
will thus generate a snapshot of the channel with the desired statistical
properties. The input signal used in the measurements are transmitted
through the generated channel and the received signal is corrupted by an
additive white Gaussian noise, the measurement noise. This noise has the
same variance as the one estimated from the measurements. The simulated
channel is then identified using equation (4.16), using 700 samples just as
for the measurements.

A total of 100 Monte Carlo trials are performed with different noises and
channel parameters. In Figure 4.2 the estimated PDP for one measurement
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Figure 4.2: The estimated PDP for measurement 23 (cf. Chapter 3) and the
calculated noise floor under the white noise assumption (4.24). The part of
the PDP under the threshold is set to zero in the simulation.
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Figure 4.3: The simulated PDP with white noise. Measurement 23
(cf. Chapter 3) is used as a pattern for generating a set of channels used for
Monte Carlo simulations.

location is displayed. I Figure 4.3 the average result from the 100 Monte
Carlo trials generated with this PDP is depicted. In the measured data,
Figure 4.2, there is significant deviation between the noise floor calculated as
in (4.24) (dash-dotted curve) and the average power of the taps with the least
power (dotted curve). This is not the case in the simulated PDP with white
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noise (Figure 4.3). There, the estimated noise floor for the simulated PDP
coincides with the power level for the smallest estimated taps, those that in
the pattern are zero and thus carry no signal power and only noise power,
as expected from the theory. The difference between the result expected
from theory and the measured PDP (in Figure 4.2) indicates that some
assumptions about the data or the model are wrong. A possible error source
could be the presence of colored measurement noise.

Noise floor for colored noise
To investigate the presence of colored noise we identify the channel using
a prediction error method (PEM) with a more general model structure,
including a noise-filter C(q−1),

y(n) = H(q−1)x(n) + C(q−1)ν(n)︸ ︷︷ ︸
v(n)

(4.25)

where ν(n) is a white noise [50]. In this example we identify a moving
average noise-filter C(q−1), of degree five, for each batch of data in the mea-
surement at the same location as before. Even though the identified channel
parameters hk(t) showed large variations over the time t, the identified noise-
filter parameters were rather stable for all the snapshots, as can be seen in
Figure 4.4.3 The average parameters for the noise coloring filter C(q−1) are
[1.0, 0.20 + 0.03i,−0.2, 0.1,−0.08, 0.05], a rapidly decaying impulse response
resulting in a weakly colored noise. The assumption of white noise is thus
not valid.

The LS estimate ĥ remains unbiased even with colored noise, but the
expected value for the power will change from what is given in equation
(4.23) to

E{|ĥk(t)|2} = [X†RvX†∗]kk + E{|hk|2}. (4.26)

The noise floor is thus altered to

ef = diag(X†RvX†∗), (4.27)

where Rv is the covariance matrix (4.14),(4.20) of v(n) = C(q−1)ν(n).4

To calculate the noise floor as in (4.27) the noise covariance Rv must be
estimated.

3This was somewhat unexpected, as the properties of environmental noise would change
just as fast as the mobile radio channel when the mobile moves. If, on the other hand,
the noise is produced internally in the receiver, then the noise filter could be close to
time-invariant.

4The equation (4.23) is just a special case of (4.26) with Rv = σ2
vI.
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Figure 4.4: Real part of the identified noise-filter parameters in (4.25) from
measurement 23. The darker the parameter the smaller the delay corre-
sponding to the parameter in the C(q−1) polynomial. The solid lines are
the means.

When an additive colored noise is introduced in the simulations, a sim-
ilar effect as for the measured data can be obtained, see Figure 4.5. The
simulation is performed in the same manner as previously described, using
LS for estimating the impulse responses, but the noise is now generated as
a white noise filtered by a 40 tap long exponentially decaying noise filter.
This is an ad hoc choice, built on the assumption that the echoes represented
by the noise term decay rapidly. (If there is internal colored noise in the
receiver, there are no echoes. Still the rapidly decaying impulse response is
similar to that observed for the noise filter in measurements.) The taps in
the noise-filter are selected as ck = (bk + 1)e−k/2/b, where bk is the absolute
value of a normal distributed random variable with zero mean and variance
one. The normalization factor b is selected so that the filter does not change
the variance of the noise, i.e.

∑
|ck|2 = 1. The variance of the colored noise

is the same as for the white noise in the previous simulation. The colored
measurement noise results in a lower noise floor than white noise with the
same variance, when using LS-estimation for the impulse response.

The average parameters for the estimated noise-filter and the variance
estimate from the PEM have been used to estimate the covariance matrix
R̂v for the colored measurement noise on the measured data. The resulting
noise floor, obtained as in (4.27), is in agreement with the observed noise
floor in the estimated PDP from the measurement (the channel is estimated
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Figure 4.5: Simulated PDP, estimated by LS, with colored noise. The col-
ored noise has the same variance as estimated from the measurement. The
coloring noise channel impulse response is a rapidly decaying exponential
function.

by LS).
From experience with measurements and simulations we can conclude

that the observed lowest levels in the estimated PDP can be used as an
estimate of the channel tap estimation error variance. Thus, an estimated
tap can be modeled as the true value with an additive estimation error, as

ĥk(t) = hk(t) + ek(t), (4.28)

where the variance of the estimation error ek(t) is given by the noise floor
obtained from the estimated PDP. There is thus no need to estimate the
variance using (4.27). We have also seen that calculating the noise floor
using (4.24) can result in an overestimation of the noise floor.

The estimated error variance will be used in Chapter 5 in the design of a
noise-reduction smoother, for filtering of the estimated channel parameters.

4.2.5 Choice of identification procedure

All of the evaluated methods, ETFE, LS and PEM give roughly the same
results for the taps that contain the most energy. To find the best method
we investigate the lowest level (the noise floor) in the estimated PDP, which
is linked to the variance of the estimation error.

The ETFE produces estimated channel impulse responses in which the
lowest level in the PDPs are a few dB over the lowest levels produced by the
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LS estimation (this level varies from measurement to measurement though).
The PEM, taking the colored noise into account, also results in higher lowest
levels in the PDP as compared to the LS-method. This is because PEM
estimates more parameters, which causes a higher variance in the estimates.
In addition it is generally hard to estimate the noise-filter, C(q−1) in (4.25),
with good accuracy from a limited amount of data. Thus, we do not in this
application gain anything in accuracy for the estimated impulse responses
by using PEM instead of LS. As discussed in Section 4.2.4, the lowest level
in the PDP can be linked to the variance of the estimation error. Since
both the ETFE and PEM methods produce estimates with higher variance
than LS for the taps with low amplitude, the LS-method is selected for
identification of the channel.

4.3 Analysis of the LS Estimation Error on the
Jakes Channel

A channel in a wireless communication link is often treated as time invariant
over an estimation interval, during which a least squares estimate of the
channel is calculated, using training symbols. By a second order Taylor
expansion of the channel, the estimation error due to time variation can be
approximated as the sum of a bias and an excess error, which are due to the
curvature and linear change of the channel, respectively. In the following,
approximations for the variances of the different contributions to the channel
estimation error will be derived, for a Rayleigh fading channel with Jakes
spectrum.

The LS-estimate

The LS estimate of the channel impulse response, ĥ, for a time-varying
channel, is obtained as in (4.16)

ĥ = X†y
4
=
(
XHX

)−1
XHy (4.29)

=

(
N∑
n=1

x(n)xH(n)

)−1 N∑
n=1

x(n)xH(n)h(n) + X†v. (4.30)

The expression (4.30) differs from (4.16) in that the unknown FIR channel
is represented by a time-varying M -tap channel vector

h(n) = [h0(n) h1(n) . . . hM−1(n)]T . (4.31)



4.3. Analysis of the LS Estimation Error on the Jakes Channel 83

The channel estimate, ĥ, can thus be seen as a weighted average of h(n) over
the estimation interval [1 N ], corrupted by an additive noise. The desired
channel is the true channel in the middle of the estimation interval, as seen
in Figure 4.6.

h(n)

nN+1 N
2

h(n) curved

h(n) linear
h

Time−varying channel

[1  N]

Figure 4.6: For a channel that changes linearly the average value coincides
with the value in the middle of the interval. For a curved channel the value
in the middle differs from the average value. The weighted average, as in
the LS-estimate of the channel, differs from the true average mainly due to
the linear change of the channel.

Continuous and discrete time

The discrete channel is denoted h(n), where n is the index at baseband
sampling period. The continuous channel has a different time argument and
is denoted h(tc), where tc denotes continuous time. The discrete and con-
tinuous channel are related as h(n) = h(tc)|tc=nts , where ts is the baseband
sampling rate.

4.3.1 Noise-induced error

In (4.17) the error due to measurement noise is represented by

eN = X†v. (4.32)
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For a white measurement noise that is independent of the data sequence
{x(n)}, used for identification, the covariance matrix for this error is given
by (4.22)

RN = Ev{eNeHN } = σ2
vQ, (4.33)

where Ev{·} denotes expectation over the noise and

Q
4
= (XHX)−1. (4.34)

Assume x(n) to be samples from a white complex circular sequence with
zero mean and variance σ2

x. The ensemble average with respect to the data
sequence {x(n)} will be denoted Ex{·}. In Appendix 4.A the expectation
of the inverse of the unnormalized sample covariance matrix, (XHX)−1, is
approximated as (4.67)

Ex{Q} ≈
1

σ2
xN

(
1 +

M + κx − 2
N

)
I. (4.35)

Utilizing (4.35), the average Ex{RN} can be approximated by

R̄N = Ex{RN} = σ2
vEx{Q} ≈

σ2
v

σ2
x

· 1
N
·
(

1 +
M + κx − 2

N

)
I, (4.36)

where κx is the Pearson kurtosis, which is defined as

κx
4
=

Ex{|x(n)|4}
(Ex{|x(n)|2})2

. (4.37)

For a complex Gaussian sequence κx = 2, for a complex constant modulus
sequence κx = 1 and for a square M-QAM constellation 1 ≤ κx ≤ 1.4. The
estimation error due to measurement noise is thus evenly spread over all the
estimated taps. The variance of the estimation error due to measurement
noise is inversely proportional to the SNR and is approximately inversely
proportional to the number of samples N used in the estimation.

The sum of variances of all parameter estimation errors, given as the
trace of R̄N, can by using (4.36) be approximated as

trR̄N ≈
σ2
v

σ2
x

· M
N
·
(

1 +
M + κx − 2

N

)
. (4.38)

For large N , the kurtosis plays a minor role and when N �M , the variance
of the noise induced error increases linearly with the number M of estimated
coefficients (the number of taps).
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4.3.2 Excess error

The weighted averaging of the channel in (4.30) can cause the LS-estimate
to deviate from the true average of the channel even in the absence of mea-
surement noise. To study this error we utilize a decomposition of the time
varying channel into a sum of the average channel, h̄[1 N ], defined as

h̄[1 N ]
4
=

1
N

N∑
n=1

h(n), (4.39)

and the time varying channel deviation from h̄[1 N ], ϑ(n). Thus,

h(n) = h̄[1 N ] + ϑ(n). (4.40)

Using (4.40), the LS solution (4.30) can be expressed as

ĥ= h̄[1 N ]+Q
N∑
n=1

x(n)xH(n)ϑ(n) + eN, (4.41)

where the time invariant and the time varying terms are separated. We
define the LS estimate’s deviation from the average channel due to time
variation, eE, as the excess error

eE =
(
XHX

)−1
N∑
n=1

x(n)xH(n)ϑ(n). (4.42)

The LS estimate of the channel is thus the sum of the average channel in
the interval, an excess error term due to the weighted averaging of the time
varying channel and a noise term

ĥ = h̄[1 N ] + eE + eN. (4.43)

Averaging over channel realizations

The covariance matrix for the excess error, RE, is found by averaging over
channel realizations

RE = Eh{eEeHE } (4.44)

= Eh

{
Q

N∑
n=1

N∑
m=1

(
x(n)xH(n)ϑ(n)ϑH(m)x(m)xH(m)

)
Q

}
, (4.45)
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where Eh{·} is the averaging operator. The transmitted symbols are inde-
pendent of the channel, so only ϑ(n)ϑH(m) will be affected by the expecta-
tion. The cross-covariance matrix for the channel deviation from the average
can be obtained as in Appendix 4.D, equation (4.84) and (4.85),

Rϑ(n,m) = Eh{ϑ(n)ϑH(m)} ≈ f(n,m)Rh, (4.46)

where Rh is the channel correlation matrix and the scalar function f(n,m)
is defined as

f(n,m)
4
=

(tsωD)2

2

(
n− N + 1

2

)(
m− N + 1

2

)
. (4.47)

The expression is obtained using a Taylor expansion of the channel (Ap-
pendix 4.B), combined with the covariance and cross-covariance matrices of
the first and second derivatives of the channel for a Rayleigh fading channel
with Jakes spectrum and maximal Doppler frequency ωD (Appendix 4.C).
The covariance matrix of the excess error (4.44) can by insertion of (4.46)
and (4.47) be approximated as

RE ≈ Q
N∑
n=1

N∑
m=1

(
f(n,m)x(n)xH(n)Rhx(m)xH(m)

)
Q. (4.48)

Thus, for any given data sequence {x(n)}, the covariance matrix of the LS
excess error due to time variation of a Rayleigh fading channel with Jakes
spectrum can be calculated using (4.48) and (4.47).

Averaging over data sequences

Given the distribution of the data sequences {x(n)}, an approximation for
the average covariance matrix for an ensemble of training sequences

R̄E = Ex{RE} = Ex{Eh{eEeHE }}, (4.49)

can be calculated by some further manipulation of (4.48). The diagonal
elements of R̄E can be obtained as in Appendix 4.E, equation (4.100)

[R̄E]i,i ≈
[

Ex

{
Q

N∑
n=1

N∑
m=1

(
f(n,m)x(n)xH(n)Rhx(m)xH(m)

)
Q

}]
i,i

(4.50)

≈ N (tsωD)2

24

(
(κx−2)σ2

hi +
M−1∑
k=0

σ2
hk

)
, (4.51)
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where N is assumed to be large in relation to M . Here σ2
hk

denotes the
variance of tap k. The variance of the excess error thus increases at the
same rate as the number of samples used for the channel estimation. The
kurtosis of the data sequence matters but does not dominate the behavior
of the excess error variance. For a complex Gaussian sequence with κx = 2
all the taps would be corrupted by the same amount of excess error. For
sequences with κx < 2, the strongest taps will actually be corrupted by
slightly less excess error power than the smallest taps. As the Doppler
frequency directly depends on the speed, the variance of the excess error
increases with the square of the speed. A doubling of the vehicle velocity
result in four times larger excess error variance.

The length of the estimation interval is T =Nts. To express the covari-
ance as a function of the time-frequency product TfD, the Doppler frequency
ωD has to be expressed as ωD = 2πfD. The time-frequency product TfD
can be interpreted as the distance traveled during the estimation interval,
measured in wavelengths. The sum of variances of the excess errors for all
parameters, given as the trace of R̄E, using (4.51) with the substitution
tsωD = 2πTfD/N , can be approximated as

trR̄E =
M−1∑
i=0

[R̄E]i,i ≈
π2(TfD)2

6N
(M+κx−2)

M−1∑
k=0

σ2
hk
. (4.52)

The variance of the excess error is, for a given N , proportional to the time-
frequency product (the length of the estimation interval measured in wave-
lengths) to the power of two. For a given time-frequency product and large
N , the variance is proportional to the inverse of N . The excess error is thus
decreasing if the sampling interval, measured in wavelengths, decreases or if
the number of samples within the interval increases.

4.3.3 Bias error

The average channel in the estimation interval, h̄[1 N ], deviates from the
value in the middle of the interval if the trajectory of the channel deviates
from a straight line. This deviation can be viewed as a bias error [15], that
can be evaluated using the Taylor expansion of the average channel as in
Appendix 4.B (4.71),

eB = h̄[1 N ] − h(tc)|tc=N+1
2
ts
≈ −N

2 − 1
24

t2s
d2h(tc)
dt2c

∣∣∣∣
tc=

N+1
2
ts

. (4.53)
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The bias error thus depends on the curvature of the channel in the estimation
interval. The LS estimate (4.30) also deviates from the value of the channel
at the middle of the interval, which can be seen from (4.43) and (4.53)

ĥ = h̄[1 N ] + eE + eN

= h(tc)|tc=N+1
2
ts

+ eB +eE+eN, (4.54)

where we in the last approximation assumes N � 1. Averaging over real-
izations of the channel, the covariance matrix for eB is

RB = Eh{eBeHB } ≈
(
N2 − 1

24
t2s

)2

Eh

{
d2h(tc)
dt2c

d2h(tc)
dt2c

H
}∣∣∣∣∣

tc=
N+1

2
ts

=
(N2 − 1)2

1536
(tsωD)4Rh ≈

π4(TfD)4

96
Rh. (4.55)

The variance of the bias error does thus solely depend on the length of the
estimation interval and not on the statistics of the data sequence. The trace
of RB can be approximated as

trRB ≈
π4(TfD)4

96

M−1∑
k=0

σ2
hk
. (4.56)

Note that the Taylor expansion (4.68) on which these expressions are based,
is valid for no more than half a period of the fastest oscillation. Thus, the
approximations are only valid for TfD < 1/2.

4.3.4 Total estimation error

The LS estimate of the impulse response, at the middle of the estimation
interval, can now be expressed as

ĥ = h
(
N+1

2
ts

)
+ e (4.57)

where the additive error term is approximated as

e ≈ eN + eE + eB, (4.58)

with the error terms given by (4.32), (4.42) and (4.53). The excess error and
the bias error (eE and eB) are approximately uncorrelated, since eE is related
to dh(tc)/dtc and eB to dh2(tc)/d2tc and from Appendix 4.C, equation (4.77)
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we have that the expectation of the product between the first and second
derivative of the channel is zero. Furthermore, under the assumption that
the measurement noise is independent of the channel, eN is uncorrelated to
both eE and eB. The covariance matrix of the total estimation error can
thus be modeled as

Re ≈ R̄N + R̄E + RB. (4.59)

The sum of parameter error variance can be obtained as the trace of Re,
as obtained from summing (4.38), (4.52) and (4.56), The normalized mean
square error (NMSE) of the estimation error, obtained as trRe normalized
by the average gain of the channel, that is

∑M−1
k=0 σ2

hk
, is a good measure for

the estimation accuracy. Compiling the results we obtain

trRe∑M−1
k=0 σ2

hk

≈ σ2
v

σ2
x

∑M−1
k=0 σ2

hk

· M
N

(
1 +

M + κx − 2
N

)
+
π2(TfD)2

6N
(M+κx−2)+

π4(TfD)4

96
. (4.60)

The first term, the variance of the noise induced error, depends on the
average SNR (4.6) and on the statistics of the transmitted sequence but
not on the time-variation of the channel. The second term, the variance of
the excess error, depends on the time variation of the channel and on the
transmitted sequence but not on the transmit power, whereas the third term,
the variance of the bias error, solely depend on the length of the estimation
interval in relation to the time variation. If the length of the estimation
interval is fixed, then T does not depend on the number of samples N used
for the estimation. If, on the other hand, the sampling period ts is fixed,
then T in (4.60) should be exchanged with Nts, as the estimation interval
then grows with N .

4.3.5 Simulation evaluations

Example 4.1 A GSM like channel

In our simulation example, we let each tap in an approximately Rayleigh
fading channel with Jakes spectrum be simulated as a sum of 500 complex
sinusoids with Gaussian distributed amplitude and frequency fD cos(θn),
where θn is the angle of incidence, cf. equation (2.49) in Chapter 2. The
angles are here assumed to be uniformly distributed between [0 2π[. The
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channel has four taps with exponentially decaying variances 1, 1/2, 1/4 and
1/8, respectively. The Doppler frequency is fD = 160 Hz and the sampling
period is ts = 5 µs. The time-frequency product is thus TfD = NtsfD =
N · 8 · 10−4. A white QPSK signal is transmitted over the time-varying
channel and 105 samples are collected by the receiver. A measurement
noise is added so that the received average SNR is 20 dB.

The channel is estimated block-wise with an LS estimator using dif-
ferent numbers of training symbols. The estimated channel is compared
to the true channel and the error is calculated for the estimated taps.
The variance of the error is estimated and summed for all the taps in
the channel, to obtain trR̂e which then is normalized by

∑M−1
k=0 σ2

hk
to

obtain the NMSE. The theoretical value for the normalized trRe is ob-
tained from (4.60). As seen in Figure 4.7, the theoretical approximation
almost coincides with the result for the NMSE from the simulation for
time-frequency products, TfD up to 1/2 (625 samples) and after that the
NMSE is overestimated.

10
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3
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−4
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−3

10
−2

10
−1

# of samples,  N

N
M

S
E

Theoretical
Simulation
Noise−induced error
Excess error
Bias error

Figure 4.7: The variance of estimation error for the simulated channels is
compared with the theoretical values obtained from (4.60). The contribu-
tions from (4.38), (4.52) and (4.56) are plotted separately. All variances are
normalized by the total power of the channel. The vertical dotted line at
N =625 marks that the estimation interval then is half a wavelength long.

This type of plot can be helpful to obtain the necessary amount of
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training data to achieve a certain channel NMSE at a specified maximum
Doppler shift and signal SNR. To obtain a channel NMSE of less than 10−3

in this example, the number of training samples should be in the range of
53-153. If the SNR would increase from 20dB to 30dB then the line for
the variance of the noise induced error would be drawn a factor 0.1 lower,
with the same inclination, whereas the lines for the excess error and bias
would remain as is.

Example 4.2 The appropriateness of the channel sampling rate
for a fast sampled measured broadband channel

In the fast sampled measured channels of Chapter 3 the number of sam-
ples used for identification, and the number of estimated channel taps are
fixed, but the time-frequency product varies due to different vehicle veloc-
ities. With the variance of the noise set to zero in (4.60) the expression
can be used to obtain an idea of the contribution from the time variation
to the estimation error in the measurements. The channel measurements
in the data base have N =700, M =120 and the time-frequency products
vary from about 0.002 to 0.02 wavelengths, depending on the speed of the
receiver.5 In Figure 4.8, the estimated channel estimation error NMSE for
the measured channels are plotted together with the corresponding the-
oretical NMSE due to time variation, as functions of the time-frequency
product. As can be seen in the plot the excess error dominates the the-
oretical NMSE. The estimated NMSE is generally much higher than the
theoretical NMSE due to time variation in these measurements. It is thus
the measurement noise that dominates the estimation error. The time
variability due to the movement of the receiver during the estimation in-
terval creates only a minor contribution to the total estimation error in
these measurements.

5A velocity of 105 km/h result in a time-frequency product of

TfD = N
fs
· fcv

c
= 700

6.4·106 · 1880·106

3·108 ·(105/3.6)
=0.02 wavelengths.
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Figure 4.8: The NMSE for the estimation error due to time variation as a
function of the time-frequency product. The number of samples used for
estimation is N =700 and the number of estimated taps is M =120, just as
for the fast sampled channel measurements in the data base. The NMSE for
the the estimated channels are denoted by x. The contributions from (4.52)
and (4.56) are plotted separately. A time-frequency product of TfD = 10−2

corresponds to a speed of 52.5km/h.

4.4 Conclusion

• Block based LS-estimation is found to result in reasonable estimates of
the impulse response for a measured time-varying broadband channel.

• The estimation error can be seen as a noise floor in the estimated
power delay profile.

• The block based LS-estimation result in an estimate of the average
channel impulse response in the estimation interval.

• In block based estimation of a time-varying impulse response, both
the measurement noise and the time-variation contribute to the total
estimation error.

• The estimation error due to measurement noise becomes proportional
to the inverse of the number of samples used for identification.
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• The error due to time-variation within the estimation interval can be
parameterized using the time-frequency product TfD, which is the
length of the estimation interval measured in wavelengths, and the
number of symbols N used for identification.

• The variance of the estimation error due to weighted averaging of
the time-varying channel becomes proportional to the time frequency
product to the power of two and to the inverse of the number of samples
used for identification.

• The average channel deviates from the true channel in the middle of
the interval. This bias error is independent of the data sequence and
the number of samples used for identification. The variance of the
bias error is proportional to the time-frequency product to the power
of four.

When the time-frequency product is small, the measurement noise will
dominate the estimation error. Instead of increasing the estimation interval
to average away measurement noise, the noise reduction can be performed
on the estimated channel, using filters designed to fit the dynamics of the
channel. The design and performance of such filters is the topic of Chapter 5.
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4.A The Inverse of the Sample Covariance Matrix

In the expressions for the covariance matrices of the noise-induced error,
(4.33), and the excess error, (4.44), the inverse of the sample covariance
matrix plays an important role. We shall here derive a useful expression for
this inverse. For a white data sequence, {x(n)}, the matrix product XHX
can be decomposed as

XHX =
N∑
n=1

x(n)xH(n) = NRx +
N∑
n=1

Z(n). (4.61)

where
Rx = Ex{x(n)xH(n)} = σ2

xI (4.62)

is the covariance matrix for x(n), and

Z(n) = x(n)xH(n)−Rx (4.63)

is the zero mean deviation from this covariance matrix. For a circular com-
plex valued sequence, it holds [52]

Ex{Z(n)} = 0 (4.64)

Ex{Z(n)Z(m)} = σ4
x(M + κx − 2)Iδn,m (4.65)

where κx is the Pearson kurtosis. To obtain an estimate of the inverse sample
covariance matrix, we make a second order Taylor expansion around I as

Q
4
=
(
XHX

)−1
=

1
σ2
xN

(
I +

1
σ2
xN

N∑
n=1

Z(n)

)−1

≈ 1
σ2
xN

(
I− 1

σ2
xN

N∑
n=1

Z(n) +
1

σ4
xN

2

N∑
n=1

N∑
m=1

Z(n)Z(m)

)
. (4.66)

The expected value of (4.66), using (4.64) and (4.65), yields

Ex{Q} = Ex
{(

XHX
)−1
}
≈ 1
σ2
xN

(
I +

M + κx − 2
N2

N∑
n=1

N∑
m=1

Iδn,m

)

=
1

σ2
xN

(
1 +

M + κx − 2
N

)
I. (4.67)
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4.B Taylor Expansion of the Channel

To obtain expressions for the average channel and the deviation, we perform
a second order Taylor expansion of the continuous channel, h(tc), around
the middle of the estimation interval

h(n) = h(tc)|tc=nts ≈h(tc)|tc=N+1
2
ts

+
(
n− N+1

2

)
ts
dh(tc)
dtc

∣∣∣
tc=

N+1
2
ts

+
(
n− N+1

2

)2 t2s
2
d2h(tc)
dt2c

∣∣∣
tc=

N+1
2
ts
, (4.68)

where ts denotes the sampling period. For oscillating channels, this Taylor
expansion can be used for an estimation interval not longer than half a
period of the fastest frequency component just as for sinusoids, as for longer
intervals the second derivative is likely to change sign within the interval
and a third term would be needed to accommodate this behavior.

To evaluate the average channel in the estimation interval, we need the
sums,

N∑
n=1

(
n− N+1

2

)
= 0 (4.69)

N∑
n=1

(
n− N+1

2

)2

=
N(N2 − 1)

12
. (4.70)

Using (4.68) and the sums (4.69), (4.70), the average channel can be ex-
pressed as

h̄[1 N ] =
1
N

N∑
n=1

h(n) ≈ h(tc)tc=N+1
2
ts

+
N2 − 1

24
t2s
d2h(tc)
dt2c

∣∣∣
tc=

N+1
2
ts

(4.71)

The deviation ϑ(n) can be obtained from (4.68) and (4.71) as

ϑ(n) = h(n)− h̄[1 N ] ≈(
n−N+1

2

)
ts
dh(tc)
dtc

∣∣∣∣
tc=

N+1
2
ts

+

[(
n−N+1

2

)2

−N
2−1
12

]
t2s
2
d2h(tc)
dt2c

∣∣∣∣
tc=

N+1
2
ts

.

(4.72)

As the ϑ(n) is the deviation from the average channel in the estimation
interval, we have that

∑N
n=1ϑ(n) = 0. This expression for ϑ(n) will be used

to obtain approximate expressions for the covariance matrix for the excess
error.
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4.C Correlation for the Derivatives of the Channel

To compute RE in (4.44) and RB in (4.55), the covariance and cross-
covariance matrices of the first and second derivatives of the channel are
needed. For notational convenience h(t) denotes a continuous channel at
time t in this section, as only continuous channels are considered in this
section. For a Rayleigh fading channel the autocorrelation matrix is given
by [11]

Eh{h(t)hH(t+ τ)} = RhJ0(ωDτ), (4.73)

where the expectation is taken over realizations of the channel, not over
time, and ωD is the maximal Doppler frequency (in rad/s). The zero order
Bessel function of the first kind J0(·), has the series expansion [53]

J0(ωDτ) =
∞∑
k=0

(−1)k

(k!)2

(ωDτ
2

)2k
. (4.74)

Using (4.73) and (4.74), the covariance matrices of the derivatives of the
channel can be derived.

Covariance for the first derivative

The covariance matrix of the first derivative is

Eh

{
dh(t)
dt

dh(t)
dt

H
}

= Eh

{
lim

∆t→0
∆τ→0

h(t + ∆t)− h(t)
∆t

· h
H(t + ∆τ)− hH(t)

∆τ

}

= lim
∆t→0
∆τ→0

Rh

∆t∆τ
(J0(ωD(∆t−∆τ))− J0(ωD∆t)− J0(ωD∆τ) + 1). (4.75)

To evaluate (4.75) only the first two terms in the series expansion (4.74)
of J0(·) are needed, as higher orders will cancel or have terms that will
approach zero in the limit.

Eh

{
dh(t)
dt

dh(t)
dt

H
}

=

lim
∆t→0
∆τ→0

Rh

∆t∆τ

(
1− ω2

D(∆t−∆τ)2

4
− 1 +

ω2
D∆t2

4
− 1 +

ω2
D∆τ2

4
+ 1
)

=
ω2
D

2
Rh.

(4.76)

The correlation for the derivative of the channel is thus equal to the correla-
tion of the channel times a factor proportional to the square of the maximal
Doppler frequency.
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Cross-covariance for the first and second derivative

The cross-covariance between the first and second derivative of the channel
is

Eh

{
dh(t)
dt

d2h(t)
dt2

H
}

=

Eh

{
lim

∆t→0
∆τ→0

h(t+ ∆t)− h(t−∆t)
2∆t

· h
H(t+ ∆τ)− 2hH(t) + hH(t−∆τ)

∆τ2

}

= lim
∆t→0
∆τ→0

Rh

∆t∆τ2
{J0(ωD(∆t−∆τ))− 2J0(ωD∆t) + J0(ωD(∆t+∆τ))

−J0(ωD(∆t−∆τ)) + 2J0(ωD∆t)− J0(ωD(∆t+∆τ))} = 0. (4.77)

The first and second derivative of the channel at time t are thus uncorrelated.

Covariance for the second derivative

The covariance matrix for the second derivative is

Eh

{
d2h(t)
dt2

d2h(t)
dt2

H
}

=

Eh

{
lim

∆t→0
∆τ→0

hH(t+∆t)−2hH(t)+hH(t−∆t)
∆t2

· h
H(t+∆τ)−2hH(t)+hH(t−∆τ)

∆τ2

}

= lim
∆t→0
∆τ→0

Rh

∆t2∆τ2
{4 + 2J0(ωD(∆t+∆τ)) + 2J0(ωD(∆t−∆τ))

−4J0(ωD∆t)− 4J0(ωD∆τ))} . (4.78)

To evaluate (4.78) terms up to the fourth order from the series expan-
sion (4.74) of J0(·) is needed (k = 0, 1, 2), higher order terms cancel or
approach zero in the limit. The covariance for the the second derivative of
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the channel is then obtained as

Eh

{
d2h(t)
dt2

d2h(t)
dt2

H
}

= (4.79)

lim
∆t→0
∆τ→0

Rh

∆t2∆τ2

{
4 + 2

(
1− ω2

D(∆t+ ∆τ)2

4
+
ω4
D(∆t+ ∆τ)4

64

)

+ 2
(

1− ω2
D(∆t−∆τ)2

4
+
ω4
D(∆t−∆τ)4

64

)
− 4

(
2− ω2

D(∆t2 + ∆τ2)
4

+
ω4
D(∆t4 + ∆τ4)

64

)}

=
3ω4

D

8
Rh (4.80)

4.D The Cross-covariance Matrix for the Devia-
tion from the Average

The cross-covariance matrix for the deviation from the average can be ap-
proximated using the Taylor series (4.72)

Rϑ(n,m) = Eh
{
ϑ(n)ϑH(m)

}
≈
(
n−N+1

2

)(
m−N+1

2

)
t2s Eh

{
dh(tc)
dtc

dh(tc)
dtc

H
}∣∣∣∣∣

tc=
N+1

2
ts

+
(
n−N+1

2

)[(
m−N+1

2

)2

−N
2−1
12

]
t3s
2

Eh

{
dh(tc)
dtc

d2h(tc)
dt2c

H
}∣∣∣∣∣

tc=
N+1

2
ts

+
(
m−N+1

2

)[(
n−N+1

2

)2

−N
2−1
12

]
t3s
2

Eh

{
d2h(tc)
dt2c

dh(tc)
dtc

H
}∣∣∣∣∣

tc=
N+1

2
ts

+

[(
n−N+1

2

)2

−N
2−1
12

][(
m−N+1

2

)2

−N
2−1
12

]
t4s
4
×

Eh

{
d2h(tc)
dt2c

d2h(tc)
dt2c

H
}∣∣∣∣∣

tc=
N+1

2
ts

. (4.81)



4.D. The Cross-covariance Matrix for the Deviation from the Average 99

The expectations of the derivatives in the expression above are evaluated for
the Jakes channel in Appendix 4.C. For the Jakes channel we thus obtain

Rϑ(n,m) ≈
(
n−N+1

2

)(
m−N+1

2

)
(tsωD)2

2
Rh

+

[(
n−N+1

2

)2

−N
2−1
12

][(
m−N+1

2

)2

−N
2−1
12

]
3(tsωD)4

32
Rh.

(4.82)

This can also be expressed using the time frequency product TfD, where
T = Nts is the length of the estimation interval and fD = ωD/2π is the
Doppler frequency in Hz. Substituting tsωD in (4.82) with 2πTfD/N , we
obtain

Rϑ(n,m) ≈
(

1− 2n − 1
N

)
︸ ︷︷ ︸
−1<(·)<1

(
1− 2m− 1

N

)
π2(TfD)2

2
Rh+

(
2n(n−(N+1))

N2
+
N2+3N+2

3N2

)
︸ ︷︷ ︸

− 1
3
<(·)< 2

3

(
2m(m−(N+1))

N2
+
N2+3N+2

3N2

)
3π4(TfD)4

8
Rh.

(4.83)

To obtain reasonable results in the channel estimation the time-frequency
product has to be small, that is TfD � 1. Under that condition we see
that the second term in (4.83) can be dropped, as the expressions within
parentheses are limited and the time-frequency product to the power of
four is small compared to the time-frequency to the power of two, in the
relevant region. It is thus sufficient to only consider the first derivative of
the channel, that is the linear change, in the approximate expression for the
cross-covariance for the channel deviation from the average.

In (4.82) we see that the cross-covariance for the time-varying channel
deviation from the average can be approximated as a scalar function of the
indices n and m, times the correlation matrix for the channel

Rϑ(n,m) = f(n,m)Rh. (4.84)

When only the linear change of the channel is considered f(n,m) is obtained
from (4.82) as

f(n,m) =
(
n−N+1

2

)(
m−N+1

2

)
(tsωD)2

2
. (4.85)
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with the property that

N∑
n=1

N∑
m=1

f(n,m)g(n) =
N∑
m=1

N∑
m=1

f(n,m)g(m) = 0, (4.86)

where g(·) may be any function, but when n = m

N∑
n=1

N∑
m=1

f(n,m)δn,m =
N∑
n=1

f(n, n) =
(tsωD)2

2
N(N2 − 1)

12
, (4.87)

where we have used (4.70).

4.E Averaging over Data Sequences

The covariance matrix, after averaging over channel realizations, for the
excess error can be approximated as (4.48)

RE ≈ Q
N∑
n=1

N∑
m=1

(
f(n,m)x(n)xH(n)Rhx(m)xH(m)

)
Q. (4.88)

To obtain the average over data sequences too, we substitute x(n)xH(n) =
Z(n) + σ2

xI and use the approximation (4.66) for Q in (4.88)

RE ≈
1

σ2
xN

(
I− 1

σ2
xN

N∑
n=1

Z(n) +
1

N2σ4
x

N∑
n=1

N∑
m=1

Z(n)Z(m)

)
×

N∑
k=1

N∑
l=1

(
f(k, l)

(
Z(k) + σ2

xI
)
Rh

(
Z(l) + σ2

xI
))
×

1
σ2
xN

I− 1
σ2
xN

N∑
i=1

Z(i) +
1

σ4
xN

2

N∑
i=1

N∑
j=1

Z(i)Z(j)

 . (4.89)

When taking the expectation over circular complex data sequences the first
order moment of Z(n) is zero (4.64). The second order terms will be kept but
third order, and higher terms, will be omitted as they will be comparably
small. As

∑
k

∑
l f(k, l)g(l) =

∑
k

∑
l f(k, l)g(k) = 0, from (4.86), only

terms containing both Z(k) and Z(l) will give a contribution. As third
and forth order terms are omitted, only one term will contribute to the
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approximate expression for the covariance matrix. The covariance matrix
for the excess error, averaged over data sequences, can thus be obtained as

Ex{RE} ≈
1

σ4
xN

2

N∑
n=1

N∑
m=1

f(n,m)Ex{Z(n)RhZ(m)} (4.90)

=
1

σ4
xN

2

N∑
n=1

N∑
m=1

f(n,m)Ex{x(n)xH(n)Rhx(m)xH(m)}, (4.91)

where we in the last equality exploited (4.86). To evaluate this expression
further we define the matrix Ξ(n,m) as

Ξ(n,m) = x(n)xH(n)Rhx(m)xH(m). (4.92)

Note that the three terms in the middle form a scalar

xH(n)Rhx(m) =
M∑
k=1

M∑
l=1

rk,lx(n−k+1)x∗(m−l+1), (4.93)

where rk,l = [Rh]k,l is the k, l:th element of the channel covariance matrix.
As this part is scalar, it can be moved to the beginning of the product. The
matrix can thus be expressed as

Ξ(n,m) =
M∑
k=1

M∑
l=1

rk,lx(n−k+1)x∗(m−l+1)x(n)xH(m). (4.94)

The i, j:th element of the product x(n)xH(m) is

[x(n)xH(m)]i,j = x∗(n−i+1)x(m−j+1). (4.95)

The average Ex over training sequences of the i, j:th element of Ξ(n,m)
is [52]

Ex{[Ξ(n,m)]i,j}

= Ex

{
M∑
k=1

M∑
l=1

rk,lx(n−k+1)x∗(m−l+1)x∗(n−i+1)x(m−j+1)

}

= σ4
x

M∑
k=1

M∑
l=1

rk,l (δi,kδj,l + δn−i,m−jδn−k,m−l + (κx−2)δi,kδj,lδn−i,m−j) .

(4.96)
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For a channel with uncorrelated taps, that is rk,l = rk,kδk,l, this result in a
diagonal matrix. An approximate expression for the variance of the excess
error on the individual taps can be derived for a general channel covariance
matrix. To find the variance of the excess error on the individual taps we
need only to calculate the diagonal elements of the covariance matrix R̄E

and thus only Ex{[Ξ(n,m)]i,j} for i = j, which according to (4.96) renders

Ex{[Ξ(n,m)]i,i} = σ4
x

(
ri,i + δn,m(κx−2)ri,i + δn,m

M∑
k=1

M∑
l=1

rk,lδn−k,m−l

)
.

(4.97)
The expectation Ex of the summation over n,m in (4.48) can now by (4.91),
(4.96), (4.97) be calculated as

Ex

{
N∑
n=1

N∑
m=1

f(n,m)[Ξ(n,m)]i,i

}

= σ4
xN(N2 − 1)

(tsωD)2

24

(
(κx−2)σ2

hi
+

M∑
k=1

σ2
hk

)
. (4.98)

where σ2
hk

= rk,k is the variance of tap k. In (4.98) we have exploited that
the sum over f(n,m) is zero unless n = m, when it is obtained as in (4.87).
Only the terms multiplied with δn,m in (4.97) will thus contribute to the
sum. The diagonal elements of the covariance for the excess error averaged
over data sequences can thus by inserting (4.98) in (4.91) be approximated
as

[R̄E]i,i = [Ex{RE}]i,i ≈
1

σ4
xN

2

N∑
n=1

N∑
m=1

f(n,m)Ex{[Ξ(n,m)]i,i} (4.99)

≈ N (tsωD)2

24

(
M∑
k=1

σ2
hk

+ (κx−2)σ2
hi

)
, (4.100)

where in the last approximation N2 ≈ N2 − 1.



Chapter 5

Noise Reduction of
Estimated Channels

5.1 Introduction

When considering consecutive snapshots of the channel, each tap of an esti-
mated channel impulse response forms a time series, sampled at the channel
sampling rate. As outlined in Section 4.2.4, this time series will be cor-
rupted by noise. From the models of the channel presented in Chapter 2, we
know that the frequency content of a tap of a channel will be approximately
band-limited, whereas the channel estimation error will be close to white1.

In Section 4.3.1 we saw that a longer estimation interval reduce the esti-
mation error due to measurement noise. This averaging over the channel can
be regarded as a low-pass filter with the impulse response of a rectangular
window. Such a filter does not exploit the properties of either the noise or
the signal. To obtain efficient noise reduction that exploits the dynamics
of the channel, it is beneficial to apply Wiener-smoothers to the time series
of sampled channel. Especially when the channel is highly oversampled in
relation to the Doppler frequency, simple linear smoothers can be designed
to reduce the influence of the estimation error significantly. This is highly
beneficial for the prediction performance, especially when sub-sampled pre-
dictors are used.

An ideal low-pass filter cutting off all frequencies outside [−fD fD] would

1When LS-estimation of the channel is used, the measurement noise depending esti-
mation error will be independent from snapshot to snapshot. The estimation due to the
time variation of the channel will be correlated over different channel snapshots but these
contributions will be small with the choices of estimation intervals used here.
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give a large noise reduction [16] but it would not include the part of the
tap energy outside the Doppler band. It would also be hard to implement
without long delays. The best noise reduction should optimize amplification
with regard to the signal power and the noise power at each frequency and
still be able to retain a reasonably low delay. In the following we will present
and evaluate such methods.

We will study the Wiener-design of both IIR and FIR-smoothers. The
IIR-smoother is designed based on an ARMA-model for the dynamics of the
tap and offers a compact smoother with few coefficients. The FIR-smoother
is designed based on a model for the correlation of the tap and need many
more coefficients than the IIR-smoother to achieve the same performance,
but it is not as numericly sensitive. Both smoothers need an estimate of the
SNR which can be obtained either from the power delay profile or from the
Doppler spectrum.

5.2 Estimated SNR for a Tap

Under the assumption that the average over time of the tap hk(t) and of
the corresponding estimation error ek(t) are both zero, an estimate of the
variance of the estimated tap ĥk(t) = hk(t) + ek(t) can be obtained as the
magnitude of the k:th tap in the PDP, as was demonstrated in Section 4.2.4.
The time index t denotes the discrete time index for the snapshots of the
channel.

All the taps of an LS-estimated snapshot of the channel impulse response
will be corrupted by roughly the same amount of noise due to the estimation
error, under the assumption that the training sequence is approximately
white. The variance of ek(t) is thus approximately the same for all taps and
is in the following denoted σ2

e .
The variance for the estimation error, that is the power, is indicated

by the noise floor in the PDP, as seen in Figure 5.1. The same noise floor
as in the PDP can be observed in the average Doppler spectrum depicted
in Figure 5.2.2 It is the average over the Doppler spectra for all the taps,
for the same measurement as for the PDP in Figure 5.1. Outside a narrow
frequency band where most of the power is located, the main contribution
to the power comes from noise. At these frequencies the average Doppler
spectrum is close to the level of the noise floor observed in the PDP. As the

2The Doppler spectrum is estimated using a Capon method, (MASC) [54], to avoid
the high side-lobes and low resolution in ordinary Fourier transform estimation of the
spectrum.
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noise floor has a flat spectrum, the channel estimation error is white.
The channel can for most practical purposes be considered as band lim-

ited to [−fD fD], as we have no way of telling what happens under the noise
floor. Even though we can not estimate the noise level inside the band-
limits, it is reasonable to extrapolate the noise floor as flat over this interval
too.
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Figure 5.1: Power delay profile (PDP) and noise floor for one measurement
location. The noise reduced PDP is estimated from the taps, after the
proposed noise reduction.

With an estimate σ̂2
e of the variance for the estimation error obtained

from the noise floor in either the PDP or the average Doppler spectrum, the
average SNR γ̄k for the k:th tap can be estimated. Under the assumption
that hk(t) and ek(t) are uncorrelated, the variance for the estimated tap is
σ2
ĥk

= σ2
hk

+ σ2
e and the SNR can thus be obtained as

γ̄k =
σ2
hk

σ2
e

≈
σ̂2
ĥk
− σ̂2

e

σ̂2
e

. (5.1)

In practise the estimated variance σ̂2
ĥk

for the observed tap may be smaller

than the estimated noise floor σ̂2
e for some small taps. To avoid this problem

we limit the SNR downwards by setting

γ̂k =
max(σ̂2

ĥk
− σ̂2

e , εσ̂
2
e)

σ̂2
e

, (5.2)
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Figure 5.2: Average Doppler spectrum (zoomed to the right) and noise floor
for the same measurement as used in Figure 5.1.

where ε is a small positive number. The estimated SNR will then be limited
downwards by min γ̂k = ε.

The Doppler frequency

An estimate of the Doppler frequency can also be obtained from the average
Doppler spectrum. The frequency region of interest [−fD fD], is simply
taken as the region where most of the power above the noise floor is concen-
trated. This will be sufficiently accurate for use in the smoother design.

5.3 IIR-smoothers

To be able to design a smoothing filter that suppresses the noise and lets
the signal through with as little distortion as possible, we need to know how
the power of the signal is distributed in the frequency domain. By using low
order ARMA-models for the channel dynamics, a robust smoother can be
derived [27],[55].

In Section 2.5 we proposed to model a channel tap, hk(t), as an ARMA
process,

hk(t) =
C(q−1)
D(q−1)

wk(t). (5.3)

Here the time index t denotes samples taken at the channel sampling rate
and the driving noise (innovation) wk(t) is assumed to be white with zero
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mean. When the channel is highly oversampled, most of its power will be
located at low frequencies around zero and the ARMA-model will thus have
a low-pass characteristic. Even though a low order ARMA-model cannot
reproduce the fine structure of the power-spectrum of an oversampled tap,
the filter is still sufficient for indicating what levels of signal power that
can be expected at different frequencies, on average. Thus, the frequency
response of the low-pass filter C(q−1)D−1(q−1) scaled by the variance of the
driving noise wk(t) serves as a model for the Doppler spectrum of the tap
hk(t). Given the filter C(q−1)D−1(q−1) and the variance of the tap hk(t),
the variance of the driving noise wk(t) can be calculated.

An additive estimation error, ek(t), corrupts the tap. The Wiener fixed-
lag smoother, represented as a stable IIR-filter

h̃k(t−m|t) =
Q0(q−1)
R0(q−1)

(hk(t) + ek(t)), (5.4)

is designed to minimize E{|h̃k(t|t + m) − hk(t)|2} at a given SNR [56]. As
the Doppler spectrum is flat outside the Doppler frequency, the noise, ek(t)
is modeled as white. The estimated level of the noise floor is used as the
variance of the measurement noise ek(t) in (5.4). The procedure results in
an estimate of the tap, delayed with the smoothing lag m, see Figure 5.3.

SmootherModel

- C(q−1)
D(q−1)

- ? -Q0(q−1)
R0(q−1)

-Σ
h̃k(t−m|t)hk(t)

ek(t)

wk(t)

Figure 5.3: The model for smoothing design for noise reduction of a tap.

If the model C(q−1)D−1(q−1) is a low-pass filter with cut-off frequency
at fD and the noise is white, then the smoother Q0(q−1)R−1

0 (q−1) will be a
low-pass filter that has an approximately flat frequency response with am-
plification one, and a linear phase in the passband [−fD fD]. Thus all fre-
quencies within the passband will be left unchanged whereas power outside
the passband will be attenuated. When the design model C(q−1)D−1(q−1)
is ARMA(nd, nc), the smoother is ARMA(max(nc, nd), nd+m). The higher
the smoothing lag, the more coefficients are required in the moving average
part, Q0(q−1), of the smoother.
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Example 5.1 Noise reduction on a measured tap

The tap corresponding to the second peak of the PDP in Figure 5.1 has an
estimated SNR of 14 dB and is approximately band-limited to ±63 Hz. As
the channel sampling rate for this measurement is 9.14 kHz, the channel
has an over sampling ratio (OSR) of 73. As a model filter C(q−1)D−1(q−1)
in (5.3), for the dynamics of the tap, a Chebyshev type one low-pass filter
of degree 4 with 4 dB passband ripple is chosen. The cut-off frequency of
the filter is set to the Doppler frequency for a vehicle velocity of 105 km/h
which for this measurement correspond to a Doppler frequency of 183 Hz.
This corresponds to just 4% of the total bandwidth in the spectrum. A
Chebyshev filter with high passband ripple has a faster roll-off than a
Butterworth filter of the same order. As we will see, the ripple shows no
significant effect on the final smoother.

Using the Chebyshev filter together with the knowledge about the noise
level (from the PDP), a Wiener-smoother, with smoothing lag of 5 samples,
is designed. In the left part of Figure 5.4 the theoretical power spectrum
of the signal C(q−1)D−1(q−1)wk(t), that is the frequency response of the
Chebyshev filter scaled by the variance of the driving noise, is plotted
together with the Doppler spectrum for the tap. The tap is scaled to
have unit variance. The right-hand part of Figure 5.4 shows the Doppler
spectrum after noise reduction using the smoother. The smoother has
0 dB amplification (and close to linear phase) in the passband, even though
the Chebyshev filter has a significant amount of passband ripple, and it
attenuates the out of band power. Thus, the relevant part of the tap is
left virtually unaltered.

The smoother in Example 5.1 has a slightly broader passband than the
Chebyshev filter used in the design. This is due to a trade-off between band-
width and linearity of the phase in the passband. For a lower noise level
the bandwidth would increase, to obtain a more linear phase in the pass-
band whereas for a higher noise level the bandwidth of the smoother would
decrease, to diminish the effect of the noise power. This reduction of band-
width will however lead to a less linear phase response in the passband. The
use of a longer smoothing-lag result in a better compromise and increases
the performance, as we will see in Section 5.5.

A problem with numerical accuracy of the smoother occurs at very high
oversampling of the channel, as both the poles and the zeros of C(q−1)D−1(q−1)
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Figure 5.4: Power spectrum of the model and the Doppler spectrum for
the tap corresponding to the second peak of the PDP in Figure 5.1, to the
left. To the right the corresponding Doppler spectrum of the tap after noise
reduction using the smoother (with dashed frequency response). The tap
is normalized to have unit variance and the SNR is estimated to be 14 dB.
The full bandwidth is ±4.6 kHz out of which the Figure shows ±1.8 kHz.

then will be clustered close to one in the imaginary plane. It is hard to cre-
ate sufficiently narrow-band IIR-low-pass-filters and the smoother design
becomes very sensitive to numerical errors on the coefficients.

5.4 FIR-smoothers

To completely avoid the non-linear phase in the passband of the IIR-smoother,
low-pass FIR-filters can be used as in [17], where Parks-McClellan filters are
applied to noise reduction on channels. The use of such FIR-filters is how-
ever suboptimal as compared to the FIR-Wiener-smoother, designed given
a model for the correlation and an estimate of the SNR. The FIR-Wiener-
smoother does not necessarily have a linear phase in the passband region,
but it is designed to minimize the smoothing error, just as the IIR-Weiner-
smoother.

The covariance functions of the taps in the channel are taken to be a
zero order Bessel-function of the first kind (Jakes model) and the noise is
assumed to be white. The Jakes model is a good description of the channels
on average, even though the different realizations of the channel can deviate
significantly from it.
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For a given smoothing-lag and length of the smoother, the Wiener-
smoother is parameterized by the SNR and the Doppler frequency. These en-
tities can be estimated from the power delay profile and the average Doppler
spectrum of the channel, as we saw in Section 5.2.

The FIR-Wiener-smoother

The correlation function for the channel in the Jakes model is given by the
zero order Bessel-function of the first kind,

rJ(τ) = J0(2πfDτ), (5.5)

where fD is the Doppler frequency.
A Wiener smoother with N coefficients and smoothing-lag m will then

have the coefficient vector

w[m] = (RJ + Iσ2
e)
−1r[m]

J , (5.6)

where RJ is the covariance matrix for a Jakes model channel,

r[m]
J = [rJ (−m) . . . rJ(N − 1−m)]T (5.7)

and σ2
e is the variance of the white estimation error normalized by the chan-

nel tap variance. The FIR-Wiener-smoother with lag m is thus

h̃k(t−m|t) = ϕ̂Hk (t)w[m], (5.8)

where ϕ̂Hk (t) is a vector with current and delayed samples of the estimated
channel

ϕ̂k(t) =
[
ĥk(t) ĥk(t− 1) . . . ĥk(t−N + 1))

]H
. (5.9)

The remaining error after smoothing is

ε(t) = hk(t)− h̃k(t|t−m). (5.10)

The FIR-smoother is similar to the FIR-predictor treated in Section 6.2.
The variance of the smoothing error can be obtained as in (6.13) under the
assumption that the tap really can be described by the Jakes model,

E{|ε(t)|2} = σ2
ε = rJ(0)− r[m]H

J RJr[m]
J . (5.11)

This expression will be used to investigate the performance of the FIR-
Wiener-smoother on Rayleigh fading tap with a Jakes spectrum.
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5.5 Noise Reduction Performance

An ideal bandpass-filter, blocking all the energy outside the frequency band
given by [−fD fD] would reduce the energy of a white noise by a factor
2fD/fs, where fs is the channel sampling frequency. The properties of
a band-limited tap inside [−fD fD] would remain unaffected by such an
idealized filter. The improvement in SNR measured in dB would then be
10 log10(fs/2fD), independent of how noisy the tap is. The performance de-
pends only on the amount of oversampling, with the OSR given by fs/2fD.
For a highly oversampled channel there is thus a great potential in the noise
reduction. The properties of a Wiener smoother approaches those of an
ideal low-pass filter when m → ∞ and when the design is performed for
high SNR’s. The question at hand is how much the IIR and FIR-smoothing
operations can realize of this potential when both the smoothing-lag and
the number of coefficients are limited.

5.5.1 FIR-Wiener-smoother

The theoretical performance of the FIR-Wiener-smoother can be obtained
using (5.11). The performance of the noise reduction is measured as the
relative improvement, that is the ratio between the variance σ2

e of the tap
estimation error and the variance σ2

ε of the remaining error after smoothing.
The improvement in SNR measured in dB is thus 10 log10(σ2

e/σ
2
ε). The

theoretical results for the performance are obtained under the assumptions
that the tap follows the Jakes channel model and that the estimation error
is white.

The improvement in SNR, as compared to the noisy signal before smooth-
ing, as a function of SNR and smoothing lag is seen in Figure 5.5. A shorter
FIR-smoother with only 64 coefficients is compared to a longer FIR-smoother
with 512 coefficient for the OSR of 25 and 100. The SNR improvement is
highest for low SNRs and decreases as the SNR increases. This is due to that
it is easier to reduce a high noise level, as compared to when there is only
a small amount of noise. This is a good property, as it is mainly the noisy
taps that need the noise reduction. The improvement in SNR saturates
when the smoothing lag increases. The saturation is faster for lower SNRs
than for higher and for a smoother using fewer coefficients as compared to
using more. For both cases most of the noise reduction capacity is achieved
already at a smoothing-lag of 20 samples. In Figure 5.6 the difference in per-
formance between the smoother with 64 coefficients and the one with 512
is seen. For the OSR of 25, the difference is quite small, especially for low
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SNRs and also small smoothing lags. The difference is larger for an OSR of
100. With an OSR of 100 there are 200 samples per traveled wavelength. A
smoother using 64 coefficients then covers roughly one third of a wavelength.
This is too short to achieve a competitive noise reduction performance. The
smoother should cover something like one traveled wavelength to obtain a
good noise reduction performance.
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Figure 5.5: The improvement in SNR using a FIR-smoother on a Jakes
channel with OSR of 25 (top row) and 100 (second row), using a smoother
with 64 (left column) or 512 (right column) coefficients. An ideal bandpass
filter would render 14 dB and 20 dB improvement, for the OSR of 25 and
100 respectively. The improvement saturates for high smoothing lags.
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Figure 5.6: The difference in noise reduction performance that is achieved
with 512 coefficients as compared to only 64 coefficients. The difference
increases with the OSR, which is 25 to the left and 100 to the right.

5.5.2 Simulated Jakes channel

The noise reduction performance of the IIR and FIR-smoothers is studied
on a simulated Jakes channel at different amounts of oversampling. The
simulated data consist of an approximately Rayleigh distributed time series
formed through the weighted summation of 50 complex sinusoids with fre-
quencies taken as fD cos θn and where the angle θn is a stochastic variable
drawn from the uniform distribution [0 2π[. The weights in the summation
are complex and Gaussian distributed. Noise is added to give different SNR
conditions and the SNR improvement after noise reduction is measured for a
range of smoothing-lags. The simulated channel consist of 10000 data points
and 100 Monte Carlo trials for each SNR and smoothing lag are performed,
with different noise and channel realizations.

The model filter C(q−1)D−1(q−1) in (5.3) is chosen as a Chebyshev type
one low-pass filter of degree 4 with 4 dB passband ripple and the cut-off fre-
quency at the Doppler frequency fD. The filter serves as the rough approx-
imate model for the dynamics of the tap. For each SNR and smoothing-lag,
an IIR-Wiener-smoother is designed according to [56]. The performance of
the IIR-smoother is compared to a FIR-Wiener-smoother with 128 coeffi-
cients which is designed as in Section 5.5.1. In Table 5.1 the average gain
in SNR over the Monte Carlo trials is presented.

As can be seen from Table 5.1, most of the gain is already achieved with
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SNR improvement (max 14dB) OSR=25, IIR/FIR
Smoothing-lag

SNR 0 2 5 10 20 30
0 8.9/9.0 10.1/10.2 11.6/ 11.6 12.8/12.8 13.0/13.0 13.4/13.4
5 7.6/7.8 9.3/9.4 11.3/11.3 12.4/12.5 12.8/12.8 13.1/13.3
10 6.6/6.8 8.7/8.8 11.0/11.1 12.0/12.2 12.4/12. 12.5/12.8
20 5.0/5.4 8.1/8.2 10.6/10.9 10.8/11.3 11.7/12.4 12.0/12.6
30 3.7/4.5 7.9/8.0 9.6/10.5 10.2/10.8 10.7/11.9 10.9/12.3

SNR improvement (max 17dB) OSR=50, IIR/FIR
Smoothing-lag

SNR 0 2 5 10 20 30
0 10.9/10.9 11.7/11.7 12.7/12.7 14.2/14.2 15.6/15.4 15.7/15.5
5 9.8/9.7 10.8/10.8 12.3/12.3 14.0/14.0 15.3/15.2 15.3/15.2
10 8.8/8.9 10.1/10.1 11.8/11.8 13.8/13.8 14.6/14.6 14.7/14.7
20 7.1/7.4 9.0/9.2 11.4/11.5 13.3/13.6 13.6/13.8 14.3/14.6
30 5.8/6.5 8.4/8.7 11.2/11.3 12.2/13.0 12.9/13.4 13.4/14.3

SNR improvement (max 20dB) OSR=100, IIR/FIR
Smoothing-lag

SNR 0 2 5 10 20 30
0 12.5/12.7 13.1/13.3 13.7/13.8 15.0/15.1 16.8/16.9 17.7/17.8
5 11.3/11.7 12.0/12.4 13.1/13.3 14.6/14.8 16.7/16.8 17.1/17.5
10 10.2/10.7 11.2/11.6 12.4/12.7 14.3/14.5 16.0/16.4 16.1/16.7
20 8.4/9.5 9.7/10.5 11.7/12.1 14.0/14.2 14.8/16.1 15.0/15.9
30 6.8/8.3 8.8/9.6 11.4/11.6 13.2/14.2 13.4/15.0 14.2/15.3

Table 5.1: Table over the average gain in SNR (dB) for the IIR and the
FIR-smoother for different smoothing-lags and SNR prior to noise reduc-
tion. The IIR smoother is based on a Chebyshev type one low-pass filter
of degree 4 with 4 dB passband ripple and the cut-off at the Doppler fre-
quency as a model for the dynamics, except for OSR=100, where a fourth
order Butterworth filter is used instead, due to numerical reasons. The
FIR-smoother is based on the correlation for a Jakes channel. The IIR and
FIR-smoothers have similar performance.

a smoothing-lag of 2 samples. To increase the smoothing-lag from 2 to 5
samples increase the gains in SNR about 1-1.5 dB. A further increase from
5 to 30 samples, result in about 3 dB improvement for an OSR of 50, which
is relatively small when the SNR is around 20 dB. The improvement in SNR
saturates when the smoothing lag is further increased, since then most of
the noise outside the band-limits is suppressed and the smoother can not
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suppress the remaining noise within the band-limits. To reduce the noise
within the band-limits more involved signal models, taking the fine structure
of the power-spectrum into account, have to be used instead of the simple
low-pass model or Jakes model.

We can assume that the gains in SNR will be close to those indicated
in the table for most mobile radio channels with corresponding OSRs. The
gain in SNR decreases when the OSR decreases as then there is less noise
outside the frequency band occupied by the signal, that can be suppressed.
The smoothing lag where the improvement in SNR saturates also decreases
as the OSR decreases due to the same reason.

The performance of the FIR-smoother is similar to the IIR-smoother
on the simulated channels. However, when the FIR-smoother needs on the
order of hundred coefficients, the IIR-smoother needs only on the order of
ten coefficients. Still the FIR-smoother is here preferred, due to numerical
sensitivity of the coefficients in the IIR-smoother.

5.6 Noise Reduction and Prediction

Noise reduction could alternatively be performed by the predictor directly.
The optimization of the predictor would then include the attainment of
sufficient noise reduction. However, there is a clear advantage in separating
the noise reduction from the prediction. In the noise reduction is it possible
to exploit the high oversampling of the channel and to use a simple model for
the dynamics of the taps, to obtain a pre-designed low complexity smoother.
As the amount of data available for training the predictor is limited, it is
beneficial if the predictor has as few coefficients to train as possible. If the
noise already has been dealt with, then the predictor can use all the available
degrees of freedom for prediction.

To circumvent the problem of the extra delay imposed by the smoothing-
lag, a bank of smoothing-filters can be applied, with smoothing-lags from
zero up to a lag that is sufficient to obtain close to optimal smoothing
performance. The channel predictor can then use the latest available channel
samples with the, at that time, best available noise reduction.

As we will see in Chapter 6, a predictor for a highly over-sampled chan-
nel is preferably sub-sampled, to keep complexity low and still attaining
high performance. Such a sub-sampled structure can not exploit the over-
sampling for noise reduction. Thus, by separating the noise reduction from
the prediction we keep the complexity low while we still can use predictors
with structures directly designed to suite the dynamics of the taps. The
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sub-sampling of a linear predictor leads to periodicity of the frequency re-
sponse of the predictor, which in turn leads to aliasing in the prediction as
we will see in Section 6.5. The noise reduction acts as an anti-aliasing fil-
ter, greatly improving the performance of the sub-sampled linear predictors.
Noise reduction is thus a key issue when designing channel predictors.

5.7 Conclusion

• Noise reduction of over-sampled mobile radio channels can be per-
formed using linear Wiener-smoothers.

– The noise reduction performance is roughly proportional to the
over sampling ratio (OSR).

– Taps with low SNR benefits the most from the smoothing.

– The use of larger smoothing-lags improves the noise reduction
but the performance saturates as the lag is increased.

• An IIR-Wiener-smoother designed based on an low-pass ARMA-model
of low order, for the dynamics of the tap, offers a compact smoother
with few coefficients.

• An FIR-smoother, designed based on a model (preferably the Jakes
model) for the correlation of the tap need significantly more coefficients
than the IIR-smoother to achieve the same performance, but it is less
numericly sensitive.

• The FIR-smoother should at least be long enough to cover observed
channel samples from a traveled length corresponding to about one
wavelength.

• Both the IIR and FIR-smoothers need estimates of the SNR and the
Doppler frequency, which can be obtained either from the power delay
profile or from the Doppler spectrum.

• The noise reduction acts as an anti-aliasing filter, facilitating for sub-
sampled predictors.



Chapter 6

Channel Tap Prediction

6.1 Introduction

Linear prediction is a powerful tool for prediction of time series. In this work
we mainly consider power prediction, that is to predict the absolute square
of a complex valued signal, and some of the methods presented in Chapter 7
for that purpose will be based on linear regressions of the observations of
the complex valued time series. In this Chapter the fundamental properties
of the linear prediction of a complex valued channel tap are discussed. The
prediction of the complex valued impulse response has in it self a great im-
portance. It can be used to obtain information about the frequency response
of the channel and in antenna array systems the predictions can be used to
reduce the multiuser interference [57].

The results of complex valued linear prediction is recapitulated in Sec-
tion 6.2. When the channel is oversampled, noise reduction can be applied
to the regressors, as described in Chapter 5. The noise reduction results
in the use of filtered regressors, treated in Section 6.2.3. Section 6.3 covers
the use of iterative predictors to reduce complexity. The importance of the
sub-sampling or delay spacing is demonstrated in Section 6.4.

There are two main approaches in linear prediction of a time series. The
correlation based sub-sampled direct FIR-predictor and the model-based
predictor, using (sub-sampled) AR or ARMA models for the dynamics of
the time series. We will study both of these approaches in this Chapter.

Throughout this and the next Chapter, we assume that the correlation
of the signal and noise are known and time invariant. In practice these
correlations change over time and have to be estimated from the observed
signal using a limited amount of data. This limits the number of predictor, or

117
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model, coefficients that can be estimated with meaningful accuracy. When
working on real measurements as in Section 6.7, the sample covariances are
as estimates of the covariances. The predictor coefficients are then given by
the LS-solution.

A tap in a mobile radio channel

The complex valued time series under consideration constitutes a tap in a
Rayleigh fading mobile radio channel, which can be modeled as a correlated
complex valued circular Gaussian stochastic variable (as was motivated in
Chapter 2). In Chapter 2 we modeled the contribution of a cluster of reflec-
tors to the channel as a narrow band filtered complex Gaussian noise. Thus,
even if the number of contributing clusters is low, as long as they have a
angular distribution, the statistics of the channel is likely to be Gaussian
and the taps are thus Rayleigh fading.

The performance of linear complex valued prediction is limited by the
correlation properties of the tap and the additive noise. The same corre-
lation functions also determine the performance of the power predictors,
see Chapter 7. For omni-directional scattering, that is the Jakes channel
model described in Section 2.4.2, it is easy to obtain theoretical limits of
performance for the prediction of a tap. This channel model will act as an
example for what results that can be anticipated, throughout this and the
following Chapters. The prediction is performed on the estimated snapshots
of the channel and the sampling rate of the channel time series (indexed by
t) is thus given by how often the channel is estimated. The noise on the
observed channel samples consist of the channel estimation error, described
in Chapter 4.

The model

A complex valued scalar signal x(t) is observed in noise as

y(t) = h(t) + e(t), (6.1)

where y(t) is the observation and e(t) is a noise with zero mean and variance
σ2
e . The present Chapter treats the problem of predicting the signal h(t+L),

given the observations y(t) up to time t. The user-defined prediction range
L is measured in channel samples. In Chapter 7 the problem of predicting
the power |h(t + L)|2 will be analyzed, with the corresponding notation.
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Assume h(t) and e(t) to be zero mean stationary Gaussian, complex
circular independent random variables1 with covariances

rh(τ) = E{h(t)h∗(t− τ)}, (6.2)

and
re(τ) = E{e(t)e∗(t− τ)}, (6.3)

respectively. The variance for h(t) is rh(0) and will be denoted σ2
h in the

following.

6.2 Linear FIR-Prediction of a Complex Valued
Signal

The FIR-predictor structure is highly suited for signals generated by AR-
processes, which according to Chapter 2 is a suitable model for the dynamics
of the taps in a mobile radio channel (even though an ARMA model describe
the channel even better). As the FIR-predictor also offers a robust low com-
plexity predictor that can fully exploit the correlation in the signal over the
lags it uses, it is a natural choice for prediction of the taps of a mobile radio
channel. The optimal linear FIR-predictor using past noisy observations to
predict a signal is given by the Wiener-Hopf equations. Derivations of the
optimal linear predictor are found in most textbooks in statistical signal
processing, i.e. [42], [58], [59]. We will in this section recapitulate these
results and introduce the corresponding notation.

6.2.1 The FIR-predictor

The goal is to predict a signal L time instances ahead using a FIR-predictor
with M coefficients. The complexity is thus limited by the choice of M . In
a vector formulation of the FIR-predictor, the signal can be predicted from
past noisy observations as

ĥ(t + L|t) = ϕH(t)θ, (6.4)

where
ϕ(t) = [y(t) y(t−∆t) . . . y(t− (M−1)∆t)]H , (6.5)

1The signal in mind is a tap in a mobile radio channel which generally has zero mean.
The Rayleigh fading channel fulfills these conditions. The Rice fading channel has, in
addition to the CN distributed component, a strong deterministic oscillating component.
The complex valued samples are in that case not Gaussian and can have a mean different
from zero.
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is the regressor and the column vector θ = [θ1 . . . θM ]T contains the com-
plex valued predictor coefficients. It is here assumed that the taps of the
FIR-predictor are equally spaced2 with delay spacing ∆t. The delay spac-
ing is commonly set to one, which for a given M is a suboptimal choice in
many cases. The choice of M and ∆t should depend on the statistics of h(t)
and e(t) and in the common case where the statistics has to be estimated,
the choice also should depend on the number of training samples. In Sec-
tion 6.4 we will see the importance of the delay spacing for the prediction
performance of a tap described by the Jakes model.

The vector product in (6.4) can also be expressed as a filtering operation
with a sub-sampled FIR-filter (as seen in Figure 6.1),

ĥ(t+ L|t) = θ(q−∆t)y(t), (6.6)

where θ(q−∆t) = θ1 + θ2q
−∆t + . . . θMq

−(M−1)∆t is a polynomial in the unit
delay operator q−1. This is a convenient representation when the frequency
response of the predictor is of interest.

- θ(q−∆t) -y(t) ĥ(t + L|t)

Figure 6.1: The predictor (6.6) is a sub-sampled FIR-filter.

The complex valued prediction error is given by

εc(t) = h(t)− ĥ(t|t− L) = h(t)−ϕH(t− L)θ. (6.7)

As h(t) and y(t) have zero mean, the same holds for the prediction error.
The mean square error (MSE) will thus be equal to the variance, which is

σ2
εc = E{|εc(t)|2} = E{(h(t) −ϕH(t− L)θ)(hH(t)− θHϕ(t− L))}

= σ2
h − rHhϕθ − θHrhϕ + θHRϕθ, (6.8)

where rhϕ is the cross-covariance between the signal and the regressor

rhϕ = E{h(t)ϕ(t− L)}
= E{h(t)[y(t − L) . . . y(t− L− (M − 1)∆t)]H}
= [rh(L) rh(L+ ∆t) . . . rh(L+ (M − 1)∆t)]T (6.9)

2It is common to use equally spaced taps in FIR-filters. Though, for some signals it
can be beneficial to use non-equal delay spacing as then the spacing between the taps can
differ and the filter can be tailored to exploit the correlation further. A signal generated by
a noise fed through a filter with an impulse response that has short stretches of non-zero
elements in between many lags that are zero, is a typical example of a signal for which a
predictor with a limited number of coefficients benefits from non-equal delay spacing.
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and Rϕ is the covariance matrix for the regressors

Rϕ = E{ϕ(t)ϕH(t)} = Rh + Re (6.10)

where

Rh =


σ2
h r∗h(∆t) . . . rh((M − 1)∆t)

rh(∆t) σ2
h

...
. . .

rh((M − 1)∆t) σ2
h

 (6.11)

is the covariance matrix for h(t) and Re is the corresponding correlation
matrix for the noise e(t).

From the Wiener-Hopf equations, we know that the MSE in (6.8) is
minimized by θ = θc with

θc = R−1
ϕ rhϕ (6.12)

and that the minimum MSE is given by [58]

min
θ
σ2
εc = σ2

h − rHhϕR−1
ϕ rhϕ. (6.13)

In the case of perfect prediction, the error will be zero and in case of no
prediction, that is θ = 0, the error will equal the signal h(t). The variance of
the prediction error will thus be bounded as 0 ≤ σ2

εc ≤ σ2
h when the optimal

coefficients are used. (In practice, with imperfectly tuned predictors, we
may of course have σ2

εc > σ2
h.)

The correlation between the signal h(t) and the prediction ĥ(t|t− L) is

rhĥ = E{h(t)ĥ∗(t|t− L)} = E{θHϕ(t− L)h(t)} = θHrhϕ, (6.14)

which for the optimal coefficients θ = R−1
ϕ rhϕ is

rhĥ = rHhϕR−1
ϕ rhϕ (6.15)

= σ2
h − σ2

εc , (6.16)

where we have used (6.13) in the last equality.
The variance of the prediction depends on the predictor coefficients and

the covariance matrix for the regressor as

σ2
ĥ

= E{|ĥ(t + L|t)|2} = θHE{ϕ(t)ϕH(t)}θ = θHRϕθ. (6.17)
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Using the optimal coefficients we obtain

σ2
ĥ

= rHhϕR−1
ϕ rhϕ = σ2

h − σ2
εc . (6.18)

The variance of the prediction ĥ(t|t−L) will thus be smaller than the vari-
ance of h(t), when the optimal prediction coefficients are used.

The correlation between the prediction error εc and the prediction ĥ(t|t−
L) can be obtained using (6.7) and (6.14)

rεcĥ = E{εc(t)ĥ∗(t|t− L)} = E
{(
h(t)− ĥ(t|t− L)

)
ĥ∗(t|t− L)

}
= rhĥ − σ

2
ĥ
.

(6.19)
When using the MSE-optimal predictor coefficients, the correlation is ob-
tained by inserting (6.16) and (6.18) into (6.19),

rεcĥ = rhĥ − σ
2
ĥ

= σ2
h − σ2

εc − σ
2
h + σ2

εc = 0. (6.20)

The prediction ĥ(t|t−L) and prediction error εc(t) are thus uncorrelated at
time t, when the MSE-optimal linear predictor is used.

6.2.2 Correlated signals

If instead of the flat fading channel with just one tap, we consider a frequency
selective channel with many taps, then the scalar model (6.1) is changed to
the vector model

y(t) = h(t) + e(t), (6.21)

where y(t) is a column vector of observations of the signals h(t) corrupted
by the noise vector e(t). The prediction can be performed separately for
each tap, just as in equation (6.4),

ĥk(t+ L|t) = ϕHk (t)θk, (6.22)

where the regressor ϕHk (t) contain the observations of tap k, as in (6.5).
However, if the taps are correlated, then this is a suboptimal predictor, as
the additional information in the other taps is unexploited. Pulse shaping of
transmitted symbols in the communication link, as described in Section 2.3,
cause the taps of the estimated channel to be correlated. Generally the
adjacent taps are most correlated and then the correlation between the taps
decays with increasing distance in lag.

Let the regressor consist, not only of the observations of on tap, but of
observations of all the taps

ϕ(t) = [yT(t) yT(t−∆t) . . . yT(t− (M−1)∆t)]H . (6.23)
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Then a linear prediction of tap k can benefit from the information in the
other taps,

ĥk(t + L|t) = ϕH(t)θk. (6.24)

The covariance matrix for the regressor, Rϕ = E{ϕ(t)ϕH(t)}, and the cross-
covariance between tap k and the regressor, rhkϕ = E{hk(t)ϕ(t − L)}, are
similar to (6.10) and (6.9) but will in addition contain elements of the cor-
relation between the taps. The optimal predictor coefficients for tap k then
follows from (6.12),

θk = R−1
ϕ rhkϕ. (6.25)

The drawback using all the observed taps in the regressor is that many
more predictor coefficients are needed. This is a problem when the statistics
are unknown, and the coefficients have to be estimated from a limited num-
ber of observations. To keep the number of coefficients low, only the nearest
neighboring taps to tap k could be included in the regressor, when predict-
ing tap k. Most of the correlation between the taps is then still exploited,
at a smaller increase in the number of predictor coefficients.

6.2.3 Filtered regressors

To increase the performance of the linear prediction it is possible to use
filtered regressors, that are less affected by the noise (or tap estimation
error) e(t). A full knowledge about the correlation properties of signal and
noise is not needed to perform the noise reduction. It is sufficient to use
a model of the dynamics and an estimate of the noise variance to design a
Wiener-smoother, as in Chapter 5, if the signal is highly oversampled.

The smoothing lag introduced by the noise reduction operation intro-
duces a corresponding delay when the smoothed signals are used in the
regressor for prediction of future values. The predictor has to compensate
for the delay by a longer prediction range. We thus want the smoothing-lag
to be small. But as a larger smoothing-lag also results in better noise reduc-
tion, we also want to use as large smoothing-lags as possible. To circumvent
this problem, a bank of noise reduction smoothers with smoothing lags from
zero up to as long as needed, can be used. For a regressor with M elements
and a delay spacing of ∆t the largest lag is (M − 1)∆t.3 The regressor con-
taining smoothed observations has to be available without delay. Under this

3In practice it is not necessary to have a smoother for each lag from zero to (M−1)∆t.
It is sufficient to use a subset of lags where the largest lag obtain close to optimal noise
reduction.
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condition, each element in the regressor consist of the smoothed observation
with an as large smoothing-lag as possible.

In Chapter 5 both FIR and IIR-smoothers are considered. The IIR-
smoother offers a more compact description with fewer coefficients than an
FIR-smoother with the corresponding noise-reduction capacity. The draw-
back with the IIR-smoother is that it is very numerically sensitive and thus
hard to implement. In the following we will therefore use an FIR-smoother
of length N instead. The use of the FIR-smoother also simplifies the calcu-
lation of the correlation below.

Smoothed observations in the regressors

The smoothed observations, using a FIR-smoother of length N , with lag m
is obtained from (5.8) as

ỹ(t−m|t) =
N−1∑
k=0

w
[m]
k y(t− k) = ϕHy (t)w[m], (6.26)

where
ϕy(t) = [y(t) y(t− 1) . . . y(t−N + 1)]H (6.27)

is a vector with N old and present observations, w[m]
k is the kth coefficient

of the FIR-smoother with lag m and

w[m] = [w[m]
0 . . . w

[m]
N−1]T (6.28)

is the corresponding filter vector. The smoothing operation can also be
expressed using the polynomial filter

W [m](q−1) = w
[m]
0 + w

[m]
1 q−1 + · · · + w

[m]
N−1q

−(M−1). (6.29)

Then (6.26) is expressed as

ỹ(t−m|t) = W [m](q−1)y(t). (6.30)

The regressor with delay spacing ∆t, using appropriately smoothed obser-
vations, is

ϕ(t) = [ỹ(t|t) ỹ(t−∆t|t) . . . ỹ(t− (M − 1)∆t|t)]H . (6.31)

The prediction is then obtained as in (6.4) using the smoothed regressor
given by (6.31) instead of the unfiltered vector (6.5)

ĥ(t+ L|t) = ϕH(t)θ. (6.32)
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If a desired smoothing lag k∆t in the regressor (6.31), is larger than the
largest available smoothing lag mmax provided by the bank of smoothers,
then ϕk+1(t) = ỹ(t− k∆t|t) in (6.31) is substituted with

ϕk+1(t) = ỹ(t− k∆t|t− k∆t+mmax) (6.33)

= ϕHy (t− k∆t+mmax)w[mmax] (6.34)

= W [mmax](q−1)q−k∆t+mmaxy(t), (6.35)

which renders a smoothed estimate of the signal with the desired delay but
using a shorter smoothing lag.

A FIR-predictor using the filtered regressor (6.31) from a bank of FIR-
smoothers is depicted in Figure 6.2. As both the noise-reduction and the
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ỹ(t−∆t|t)

?

θ1

?

θ2
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ĥ(t+ L|t)y(t) ×

×

×

ỹ(t|t)

...

ỹ(t−(M−1)∆t|t)

Figure 6.2: A predictor using smoothed regressors (6.31) from a bank of
smoothers.

predictor are linear filters, they can be combined into one single predictor
as shown in Figure 6.4.

-∑M
k=1 θkW

[(k−1)∆t](q−1) -y(t) ĥ(t+ L|t)

Figure 6.3: The combined smoother and predictor system in Figure 6.2
represented as one single linear filter.
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The correlation matrix for the smoothed regressors

The element [n,m] of the covariance matrix for the regressor (6.31), that
is Rϕ = E{ϕ(t)ϕH(t)}, consist of the correlation between two smoothed
observations with lags (m− 1)∆t and (n− 1)∆t respectively,

[Rϕ]n,m = E{ỹ(t− (m−1)∆t|t)ỹ∗(t− (n−1)∆t|t)}

=
N−1∑
k=0

N−1∑
l=0

w
[(m−1)∆t]
k w

[(n−1)∆t]∗
l E{y(t− k)y∗(t− l)}︸ ︷︷ ︸

ry(l−k)

(6.36)

=
(
w[(n−1)∆t]

)H
Ryw[(m−1)∆t], (6.37)

where Ry = E{ϕy(t)ϕHy (t)} is the covariance matrix, of size N ×N , of the
observations. The covariance matrix for the regressor Rϕ, which is M ×M ,
can thus be obtained from the matrix multiplications

Rϕ = WHRyW, (6.38)

where W is an N ×M matrix with all the smoothers for the different lags
used in the regressor

W = [w[0] w[∆t] . . .w[(M−1)∆t]]. (6.39)

The elements of the cross-correlation rhϕ can be obtained in the same man-
ner,

[rhϕ]n = E{h(t)ỹ(t− (n−1)∆t|t)} =
(
w[(n−1)∆t]

)H
E{h(t)ϕy(t− L)}

=
(
w[(n−1)∆t]

)H
rhϕy . (6.40)

The cross-correlation for the signal and filtered regressor is thus

rhϕ = WHrhϕy . (6.41)

The relations (6.38) and (6.41) can be used when the covariance matrix
for the observations are known. They will be used to obtain the limits of
prediction performance for the Jakes channel in Section 6.7.1.

Whenever the signal h(t) is unknown, we have to rely on the observations
y(t) and the noise reduction to obtain a smoothed estimate of the signal that
can be used instead of the true signal, e.g. in expressions for the prediction
error. The approximation h(t) ≈ ỹ(t|t − m∆t) is then used to substitute
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h(t) with the smoothed estimate. This is done whenever real measurements
are used.

Only when there occurs abrupt changes in the radio environment, caus-
ing discontinuities in the observed taps of the channel, the smoothed ob-
servation ỹ(t|t−m∆t) will deviate significantly from h(t) and also y(t). In
that case a reset of the prediction coefficients has to be done, as the statics
change. The difference between y(t) and ỹ(t|t−m∆t) can therefore be used
to detect abrupt changes of the statistics.

6.2.4 Estimation of predictor coefficients from data

When the signal h(t) is unknown it is substituted by ỹ(t|t −m∆t). In the
same manner the true covariances are substituted by estimated covariances
when the statistics of the signal and noise are unknown.

The L-step prediction problem can be formulated as

ỹ(t|t +mmax) = ϕH(t− L)θ + ε̂c(t), (6.42)

where ỹ(t|t+mmax) and ϕH(t− L) consist of smoothed observations. This
is a problem similar to the channel estimation problem (4.9) that was solved
with the least squares method. The θ that minimize the variance of ε̂c(t) over
a set of observations can thus be obtained using the least squares method.

Form the matrix and vector of smoothed observations

Φ = [ϕ(i) . . .ϕ(j)]H (6.43)

ỹ = [ỹ(i+ L|i+ L+mmax) . . . ỹ(j + L|j + L+mmax)]H (6.44)

where i < j and both i and j are chosen so that all the elements of Φ and
ỹ are available. The least squares estimate of θ is obtained as

θ̂ = Φ†ỹ. (6.45)

The sample correlation estimates of the correlation matrix for the regres-
sors and the cross-correlation between signal and regressor can be obtained
as

R̂ϕ =
1

j − i+ 1
ΦHΦ (6.46)

r̂hϕ =
1

j − i+ 1
ΦH ỹ. (6.47)
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These estimates will be used whenever prediction on measured channels is
performed. The tap prediction is obtained as

ĥ(t+ L|t) = ϕH(t)θ̂ (6.48)

The structure of the predictor is illustrated by Figure 6.4.
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Figure 6.4: The bank of smoothers and the predictor. Here (k − 1)∆t <
mmax ≤ k∆t where mmax is the largest smoothing lag provided by the
bank of smoothers. In the evaluation of the prediction error εc(t), the
signal h(t) is assumed unknown and is substituted by ỹ(t|t −mmax). The
true prediction error is thus unknown but an estimate ε̂c(t) is obtained.

6.3 Iterative Prediction

In iterative prediction, the predictor is tuned to predict the time series a
short step into the future. The prediction is then used as an observation of
the time series that is included in the regressor. A prediction of the future
regressor is thus performed and this predicted regressor is used in the predic-
tion of yet another step ahead. This is repeated until the desired prediction
range is achieved. Iterative prediction can be used to save complexity when
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predictions for many ranges have to be obtained, as only one predictor is
trained instead of one for each range. The reduction in complexity is traded
for accuracy, as the iterative predictor is not optimal. The iterated FIR-
predictor is closely related to an AR-model based predictor, as we will see
in an example.

Predicted regressor

The observations are predicted a ∆t step into the future. Analogous to (6.4)
we obtain

ŷ(t+ ∆t|t) = ϕH(t)θy (6.49)

where θy = R−1
ϕ ryϕ, as in (6.12), renders optimal prediction of the obser-

vation. Here ryϕ = E{y(t)ϕ(t − ∆t)} is the cross-covariance between the
observation and the regressor. A regressor that includes a predicted obser-
vation as its first element can thus be expressed as an update matrix times
the regressor

ϕ̂H(t+ ∆t|t) = [ŷ(t+ ∆t|t) y(t) y(t−∆t) . . . y(t− (M−2)∆t)]
= ϕH(t)Φ , (6.50)

where the update matrix is

Φ =
(
θy

IM−1

0 . . . 0

)
. (6.51)

Here IM−1 denotes the M − 1×M − 1 identity matrix. A prediction of the
observation two ∆t steps ahead can thus be obtained using the one ∆t step
predictor parameters and the one ∆t step predicted regressor,

ŷ(t + 2∆t|t) = ϕ̂H(t + ∆t|t)θy = ϕH(t)Φθy. (6.52)

By successive inclusion of l−1 predicted observations, and exclusion of l−1
outdated observations, in the regressor we obtain the predicted regressor

ϕ̂H(t + (l − 1)∆t|t) = ϕH(t)Φl−1 . (6.53)

The l∆t predictor for the observations are obtained from equation (6.53) as

ŷ(t+ l∆t|t) = ϕ̂H(t+ (l − 1)∆t|t)θy = ϕH(t)Φl−1θy. (6.54)

The iterated prediction of the observations thus corresponds to the predic-
tor ŷ(t + l∆t|t) = ϕH(t)θ with the coefficients θ = Φl−1θy. To make a
comparison to a state space representation easier we can express (6.54) as

ŷ(t+ l∆t|t) = ϕ̂H(t + l∆t|t)c = ϕH(t)Φlc. (6.55)

where c = [1 0 . . . 0]T .
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Predicted signal

As we now have a predicted regressor we can use it to predict the signal,
just as well as the observation. If the ∆t step predictor for the time series
h(t) is ĥ(t + ∆t|t) = ϕH(t)θh then the iterative L = l∆t step predictor of
the time series h(t) thus is

ĥ(t + l∆t|t) = ϕ̂H(t+ (l − 1)∆t|t)θh = ϕH(t)
(
θy

IM−1

0 . . . 0

)l−1

θh. (6.56)

If the optimal ∆t step predictors for y(t) and h(t) are used, that is the
coefficients are θy = R−1

ϕ ryϕ and θh = R−1
ϕ rhϕ where rhϕ = E{h(t)ϕ(t −

∆t)}, then the iterative predictor can be interpreted as the predictor in (6.4)
with the coefficients

θ =
(
θy

IM−1

0 . . . 0

)l−1

θh =
(

R−1
ϕ ryϕ

IM−1

0 . . . 0

)l−1

R−1
ϕ rhϕ. (6.57)

This choice of predictor parameters, obtained by iteration, coincides with
the optimal predictor parameters when the signal is generated by an AR-
process and is observed without noise, as shown in the example below.

Example 6.1 Iterative prediction of an AR-process

The iterative predictor coincides with the optimal predictor for the case
shown in this example. Assume that there is no noise on the observations
and that an AR-process generates the time series. In polynomial form this
is expressed as

A(q−1)h(t) = w(t− 1) , y(t) = h(t) (6.58)

where A(q−1) = 1 + a1q
−1 + · · · + anq

−n is an n:th order polynomial in
the delay operator q−1 and w(t) is the innovation sequence. The observa-
tion can thus be expressed as a weighted sum of old observations and an
innovation

y(t) = −a1y(t− 1)− · · · − any(t− n) + w(t− 1). (6.59)

The Wiener-Hopf solution for the predictor is equivalent to the steady
state Kalman predictor [60]. It is thus convenient to use the state space
formulation of (6.58),

z(t + 1) = Az(t) + cw(t)
y(t) = cHz(t) (6.60)
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with

A =


−a1 . . . −an−1 −an

1 0 0
. . .

...
0 1 0

 (6.61)

and c = [1 0 . . . 0]H . The states in (6.60) consists of old observations,
z(t) = [y(t) y(t− 1) . . . y(t− n+ 1)]T . The Kalman one-step predictor is

ẑ(t + 1|t) = Aẑ(t|t− 1) + k[y(t)− cH ẑ(t|t− 1)] (6.62)

and in steady state the Kalman prediction gain is

k = [−a1 1 0 . . . 0]T (6.63)

as then only the first state has an error due to the innovation. The es-
timated states in (6.60) thus consist of old observations except the first,
that is a predicted observation. The predicted states in equation (6.62)
are thus ẑ(t+ 1|t) = Az(t). The steady state l-step Kalman predictor for
the AR-process is

ẑ(t + l|t) = Al−1(Aẑ(t|t− 1) + k[y(t)− cH ẑ(t|t− 1)]) = Alz(t) (6.64)

The optimal l-step prediction for the observations is thus obtained as

ŷ(t + l) = cTAlz(t) = (z∗(t))H(AT )lc (6.65)

which is a predictor of the same form as in equation (6.55) with z∗(t)
corresponding to the regressor ϕ(t). We only need to show that the update
matrix Φ defined in (6.51) is the same as AT in this example to show that
the iterative prediction is optimal in this case.

The covariance matrix for the states, with old observations, is obtained
as E{z(t)zH(t)} = Rz and the cross-covariance is E{y(t)zH(t− l)} = ryz.
The coefficients for the optimal one-step predictor are given by

θy = R−1
z ryz = [−a1 − a2 · · · − an]T (6.66)

which can be seen directly in equation (6.59), since w(t−1) has zero mean.
Thus the update matrix Φ defined in (6.51) is

Φ =
(
θy

IM−1

0 . . . 0

)
=


−a1 1 0

...
. . .

−an−1 0 1
−an 0 . . . 0

 = AT . (6.67)
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The iterative predictor is thus optimal in the case where we observe an
AR-process without noise and let ∆t = 1 (one time step).

6.4 The Delay Spacing

When designing an L-step FIR-predictor there are two parameters that re-
main to be studied, that is the number of predictor coefficients M , and the
delay spacing ∆t. When the statistics of the signal and the noise are un-
known, the predictor coefficients have to be estimated from the observed
taps of the channel. As the statistics in practice are time varying, the num-
ber of samples (the adaption interval) of the channel that can be used for
estimation of the predictor coefficients are limited. The accuracy of the esti-
mated coefficients is also dependent on the channel estimation error and the
dynamics of the channel. All these factors set a practical limit on how many
predictor coefficients that can/should be estimated from the observed chan-
nel. The gain in prediction performance obtained by using more predictor
coefficients, can be lost due to the estimation error on those coefficients. It
is thus beneficial if the number of predictor coefficients M , can be kept low
at a small loss in performance. This puts an emphasis on the proper choice
of delay spacing and on the noise reduction pre-processing step.

We will in the following section see that the choice of the delay spacing ∆t
(see Figure 6.5) plays a crucial role for the obtained prediction performance.

∆ Lt

Figure 6.5: How should the spacing, ∆t, between the samples used for
prediction be chosen for a given prediction range L and a given number M
of predictor coefficients? The rings © denote the samples in the regressor
and the cross × denotes the sample to be predicted.
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The performance criterion to be used for the complex prediction is the
NMSE

V (θ,∆t,M,L, γ) =
E{|h(t) − ĥ(t|t− L)|2}

E{|h(t)|2} . (6.68)

Assume a Rayleigh fading signal with the SNR γ predicted L-steps ahead
by an FIR-predictor with M coefficients and delay spacing ∆t. Then the
best prediction coefficients θ are given by θ = R−1

ϕ rhϕ from equation (6.12).
For a given prediction range and length of the predictor (a complexity con-
straint), the delay spacing is thus the only remaining parameter to be tuned,
to minimize the NMSE.

In Section 6.1 a vector formulation of the FIR-predictor (6.4) for a com-
plex signal was introduced. With the optimal coefficients θc = R−1

ϕ rhϕ from
(6.13) the FIR-predictor is given by

ĥ(t+ L|t) = ϕH(t)θc (6.69)

where the regressor vector consists of noisy observations

ϕ(t) = [y(t) y(t−∆t) . . . y(t− (M−1)∆t)]H . (6.70)

The regressor vector can of course consist of smoothed noisy observations as
in (6.31) and can also include other correlated signals (6.23), i.e. neighboring
taps in the channel. The delay spacing ∆t, adjusts how densely the samples
in the regressor are taken from the time series. A change of ∆t thus changes
the elements of rhϕ and Rϕ in (6.9) and (6.11), respectively.

To illustrate how ∆t and M can be chosen we will consider prediction
of a tap of channel, following Jakes channel model, in the following section.

6.4.1 The Jakes channel

Assume that a flat fading mobile radio channel is Rayleigh fading and has a
Jakes spectrum. Noisy observations of the complex channel h(t), will be used
to predict the complex tap h(t). For a few different prediction ranges L, we
will find the ∆t as a function of the SNR that minimizes V (θ,∆t,M,L, γ)
in (6.68).

Covariance

The auto-covariance for a tap represented by the Jakes model for a mobile
radio channel [11] is given by the zero order Bessel function of the first kind,

rh(τ) = σ2
hJ0(2πfDτ), (6.71)
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Figure 6.6: The correlation for a complex channel with Jakes spectrum as
a function of distance. The correlation is J0(2πl), where l is measured in
wavelengths.

where fD is the Doppler frequency. It thus depends on the product of
Doppler frequency and delay

fDτ =
fc
c
vτ =

vτ

λ
, (6.72)

which is the distance measured in wavelengths. Here fc is the carrier fre-
quency, λ is the corresponding wavelength, c is the speed of light and v is the
speed of the mobile antenna. If the delay spacing is measured in wavelengths
instead of time, as in Figure 6.6, then the problem becomes independent of
the speed of the mobile antenna. The correlation has zero-crossings with
roughly half a wavelengths spacing. To exploit the correlation fully the
delay spacing ∆t thus should be smaller than about half a wavelength.

Delay spacing

Assume that the observed channel is contaminated by an additive white
Gaussian noise. Then the covariance matrix (6.10) for the regressor has an
additional diagonal loading term, Rϕ = Rh + σ2

eI. For a given ∆t in the
regressor (6.70), we can use the covariance from (6.71) to form rhϕ and Rϕ

as in (6.9) and (6.12). The NMSE is then obtained using (6.13). To find
the close to optimal delay spacing we calculate the NMSE (6.68) for all ∆tλ,
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where ∆tλ represent wavelengths instead of samples, from 10−5λ up to 0.6λ
in steps of 10−5λ, which is the channel sampling distance. A very small
channel sampling distance is chosen to come close to a continuous choice
of ∆t. The influence of a specific channel sampling rate on the result is
thus diminished. The ∆tλ that result in the smallest MSE is then selected.
Figure 6.7 presents the best delay spacing for different numbers of coeffi-
cients M , as a function of the tap-to-estimation-error SNR. The prediction
ranges are one eighth of a wavelength and one quarter of a wavelength. The
length of the FIR filter is (M − 1)∆tλ, and the optimal lengths are shown
in Figure 6.8.
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Figure 6.7: The optimal delay spacing for prediction of a channel tap,
with Jakes spectrum, as a function of SNR, for a predictor with M =
{2, 4, . . .128} coefficients.

The curves for the optimal ∆tλ as a function of SNR are discontinuous
with abrupt changes of ∆tλ. As seen in Figure 6.7, the optimal delay spacing
is highly dependent on the SNR and on the number of coefficients M . The
discontinuities can be explained by considering the MSE as a function of ∆tλ
for a selection of SNRs, as in Figure 6.9, where M = 8 and M = 32. There
are many shallow local minima in the MSE curve for a given SNR. Which of
the local minima that is the global minimum changes when the SNR varies.
The sudden jump from one minimum to another causes the abrupt changes
in the optimal delay spacing that we see in Figure 6.7. There are more local
minima in the curves corresponding to M = 32 than M = 8. This cause
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Figure 6.8: The optimal filter length (M−1)∆tλ, for prediction of a channel
tap, with Jakes spectrum, as a function of SNR, for a predictor with M =
{2, 4, . . .128} coefficients.

the discontinuities in Figure 6.7 to occur more frequently for predictors with
many coefficients as compared to predictors with fewer coefficients. We also
see from Figure 6.9 that the predictors are rather robust to the choice of
∆tλ, that is the bottom of the MSE curves is rather flat. This property is
exploited in the following section.

A robust choice of ∆t

The performance of the predictor is quite robust with respect to the choice
of delay spacing, as long as it is of the right order of magnitude. The delay
spacing doesn’t need to be adjusted at the slightest change of SNR, to keep
a close to optimal performance. We will here find delay spacings that will
give reasonable prediction performance in the SNR range 10-40 dB, for the
Jakes channel model corrupted by white noise.

The delay spacing that minimizes the NMSE on average, over an interval
of SNR can be used when the SNR is only approximately known. To avoid
that the performance in the domain of low SNR dominates, we consider the
NMSE (6.68) in the dB scale,

∆ta = max
∆t

∫ γmax

γmin

10 log10(V (∆t, γ))dγ, (6.73)
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Figure 6.9: The NMSE as a function of ∆tλ for a selection of SNRs. The
predictor has 8 or 32 coefficients and the prediction ranges are one eight and
one quarter of a wavelength. There are many local minima in the NMSE
curves. The position of the global minimum can change, when changing the
SNR.

where ∆ta is the delay spacing that on average renders the lowest NMSE
when the SNR is in the region [γmin γmax]. Table 6.1 lists the delay spacing
that on average renders the best prediction performance for a Rayleigh fad-
ing channel with Jakes spectrum and additive white noise with SNR in the
range of 10 to 40 dB for prediction ranges of one eighth, one quarter and
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one half wavelength.

Prediction range = 0.125λ
No. coef. M 2 4 8 16 32 64 128 256

∆ta [λ] 0.087 0.18 0.18 0.13 0.024 0.011 0.0053 0.0025
Av. dev. [%] 22 8 3 6 6 6 5 6
Max dev. [%] 53 19 10 29 17 13 11 14

Prediction range = 0.25λ
No. coef. M 2 4 8 16 32 64 128 256

∆ta [λ] 0.080 0.17 0.17 0.15 0.072 0.023 0.011 0.005
Av. dev. [%] 12 7 2 1 3 3 3 3
Max dev. [%] 30 17 6 3 8 8 7 8

Prediction range = 0.5λ
No. coef. M 2 4 8 16 32 64 128 256

∆ta [λ] 0.048 0.16 0.17 0.15 0.11 0.055 0.023 0.011
Av. dev. [%] 1 4 2 0.6 0.4 0.6 0.8 0.9
Max dev. [%] 3 10 4 2 0.8 1 2 2

Table 6.1: The spacing that on average renders the best NMSE (measured
in dB) with SNR in the region 10-40 dB for the prediction ranges one eight,
one quarter and one half of a wavelength. Max deviation denotes the largest
deviation from the optimal NMSE curve, whereas average deviation is the
average deviation from the optimal NMSE curve over the whole region.

A general trend is that the more coefficients in the filter, the shorter the
delay spacing should be. The predictor needs to cover a sufficient interval
of the measured channel, to achieve the best performance. With more co-
efficients, the samples can be taken denser from this interval and the delay
spacing thus decreases. The opposite holds for the dependence on the pre-
diction range: The further ahead we want to predict, the longer interval of
the measured channel the predictor has to cover. This increases the delay
spacing.

The robustness towards variation of the delay spacing increases with the
prediction range. This is seen in Table 6.1, where both the average and the
maximum deviation from the optimal performance, when using the robust
delay spacing, decreases when the range increases. In Figure 6.7 we see
that the optimal delay spacing for 4 and 8 coefficients, remain close to the
robust choice over the range of SNRs (10-40 dB), for the prediction ranges
of one eighth and one quarter of a wavelength. This stands in contrast
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to the optimal delay spacing, using more coefficients, which changes about
one order of magnitude in the same SNR range. The robust delay spacing
therefore renders quite close to optimal NMSE for the predictors using 4
and 8 coefficients. The predictors using more coefficients also show good
robustness, in spite of the large spread in optimal delay. This is because the
performance is less sensitive to the position of each individual sample, when
using many densely placed coefficients in the predictor.

The delay spacing ∆tλ can be seen as the preferable sample rate of
the channel to achieve the best prediction performance. Even though the
dynamics of the channel in this example is band-limited and a sampling rate
of half a wavelength would be sufficient in theory, the additive noise forces
us to sample at a higher rate. If the channel is sampled at a fixed rate
ts (measured in wavelengths), then the robust delay spacing ∆ta can give
the sub-sampling factor for the predictor as ∆ta/ts, rounded to the closest
integer. This is a good choice for the sub-sampling measured in samples.

Note that no noise-reduction has been applied. There is thus a clear ad-
vantage for the predictors using many coefficients, that have a large number
of degrees of freedom which can be used for noise suppression. The assump-
tion of white noise is also questionable, at least when the delay spacing is on
the order of a thousandth of a wavelength or smaller. The channel samples
are then taken so densely that it is unrealistic to assume that the noise on
adjacent channel samples would be uncorrelated. In the performance eval-
uation in Section 6.7 the smallest delay spacing will be limited and noise
reduction will be applied. The results in this section are still important as
they show how crucial the choice of a sensible delay spacing is.

6.5 The Sub-sampled Predictor and Aliasing

In the previous section we saw that it can be beneficial to space the samples
in the predictor with a certain delay, that depend on the prediction range,
the SNR and the number of predictor coefficients. If the sampling rate of
the channel is higher than that delay, the predictor will be sub-sampled.
The frequency response of a sub-sampled linear predictor like (6.6)

ĥ(t+ L|t) = θ(q−∆t)y(t), (6.74)

is periodic, as seen in Figure 6.10 of Example 6.2.
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Example 6.2 A sub-sampled predictor of a Jakes channel

Consider FIR-prediction of a Jakes model channel that is corrupted by
additive white noise resulting in an SNR of 10 dB. The channel is sampled
at a rate of 100 samples per traveled wavelength and is thus highly over-
sampled with an OSR of 50. A FIR-Wiener-predictor with 16 coefficients
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Figure 6.10: The frequency response of a sub-sampled FIR-Wiener predictor
with 16 coefficients for a Rayleigh fading tap with Jakes spectrum. The SNR
is 10 dB, the Doppler frequency is 0.01 Hz and the sub-sampling rate is 13.

is designed for a prediction range of a tenth of a wavelength. The delay
spacing is taken from Table 6.1 as ∆ta = 0.13λ. The sub-sampling factor
is thus 13, with an OSR of almost 4. The predictor achieves a prediction
NMSE of 0.14. The frequency response in Figure 6.10, for the optimal
FIR-predictor is periodic.

To avoid the periodic amplification of noise in the prediction, an FIR-
Wiener smoother with 128 coefficients and a smoothing lag of zero sam-
ples is applied in a first noise reduction step. Then a sub-sampled FIR-
Wiener predictor is designed to use the noise reduced signal. The com-
bined smoother and predictor system has a frequency response with a
low-pass character, avoiding amplification of the noise outside the rele-
vant frequency band, as seen in Figure 6.11. This predictor achieves a
prediction NMSE of 0.045, almost 5 dB better than the predictor working
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Figure 6.11: The frequency response of a sub-sampled FIR-predictor with
16 coefficients combined with a Wiener-smoother with 128 coefficients and
zero smoothing lag.

directly on the noisy signal.

The use of the sub-sampled predictor thus leads to aliasing. The pre-
dictor amplifies the observed signal in frequency regions where the noise
dominates. The noise-reduction pre-processing step solves this problem.
The smoother reduces the noise level outside the frequency band of interest
and thus works as an anti-aliasing filter with close to linear phase and 0 dB
amplification in the passband region combined with a low delay. The opti-
mization of the predictor coefficients should be performed using the statistics
of the noise reduced signal to obtain the best possible performance.

6.6 Model Based Prediction using AR or ARMA

Models

The direct prediction approach, designing L-step FIR-predictors with a
least squares algorithm, using filtered regressors, is a very robust prediction
method that is based on the FIR-Wiener filter approach. An alternative
is the model based, also called indirect, predictor. The model based pre-



142 Chapter 6: Channel Tap Prediction

dictor relies on an accurate estimate of a model for the process generating
the signal, instead of estimation of predictor coefficients. This model can
then be used in a Kalman predictor to obtain predictions at any range that
is a multiple of the chosen delay spacing [55]. The steady state solution
of the Kalman predictor is also given by the causal IIR Wiener predictor.
The iterative predictor, presented in Section 6.3, can be interpreted as a
model based method, under the assumption that the channel tap that is to
be predicted can be measured without estimation error.

From the discussion about channel modeling, Section 2.5, we know that
the taps of a sampled channel can be approximately modeled by an ARMA-
process. It should be noted that the channel is not generated by an ARMA-
process but that the dynamics can be approximately described by such a
process. In that sense there exists no true ARMA-model, only approxima-
tions that fit more or less well to the dynamics of the observed channel.
Wiener-predictors for the channel can be designed, once ARMA-models for
the dynamics of the taps are estimated. The model-system and the predictor
as seen in Figure 6.12 is similar to the model used for noise reduction in Sec-
tion 5.3. For t = s∆t, s = 1, 2, . . . , the sub-sampled signal is ys(s) = y(s∆t).

Σ

Σ

Cs(q−1)
Ds(q−1)

- - Qs(q−1)
Rs(q−1)

-? -

?

- ?-

q−L

?
Ms(q−1)
Ns(q−1)

hs(s) ys(s)

+

−

model
Signal

Predictor

ĥs(s+ L|s)

εc(s)

Noise
model

es(s)

ws(s)

Figure 6.12: The full prediction system with signal and noise model for pre-
dictor design. The predictor and the ARMA-models may be sub-sampled.
The model used for prediction is similar to the model in Figure 5.3 used for
noise reduction.

As the channel does not stay stationary over long distances, it is not
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feasible to estimate models with a large number of parameters with any ac-
curacy. The predictor thus has to rely on low order models of the dynamics.
The delay spacing ∆t plays a slightly different role here as compared to the
direct predictor. The question now is how densely the channel has to be
sampled, for the dynamics to be approximated by an AR or ARMA-model
of moderate order. If the dynamics of the channel is perfectly band-limited,
then it is sufficient to sample at the maximum Doppler frequency (then
the samples are spaced by half a wavelength). The corresponding predictor
would then only be able to predict the channel half a wavelength ahead, or
longer. To be on the safe side, oversampling is recommended. Reasonable
results are obtained with a delay spacing of a tenth of a wavelength, that is
five times oversampling.

A to high oversampling ratio for the estimated models should be avoided.
When AR or ARMA-models are fitted to channel data that are highly over-
sampled, the poles of the models cluster around z = 1 in the complex do-
main. Then the fine structure of the Doppler spectrum can not be exploited,
which leads to poor prediction performance for longer ranges (beyond a tenth
of a wavelength). In these cases sub-sampled AR and ARMA-models should
be used. The poles will then be slightly drawn back from z = 1 and are
spread over a larger angle around the unit circle |z| = 1. The sub-sampling
factor is preferably chosen so that the resulting delay spacing is on the order
of tenth of a wavelength. Then the passband of the model will take up 20%
of the spectrum.

6.6.1 Doppler spectrum estimation

An estimated ARMA-model can be seen as as a Doppler spectrum estimate,

|H(eω)|2 ≈ Ĉs(eω)
D̂s(eω)

Ĉs
∗
(e−ω)

D̂s
∗
(e−ω)

σ2
ws , (6.75)

where the subscript s denotes that the model is sub-sampled. As the model
is estimated from noisy observations, the estimated ARMA-model will also
include modeling of the noise. This result in overestimation of the power in
the Doppler spectrum, especially in the frequency regions outside plus/minus
the maximum Doppler frequency. The model error can deceive the Wiener-
predictor to amplify frequency regions where the noise dominates. With
the proper design of the noise model design, this problem can be avoided.
Alternatively spectral subtraction could be applied. This is however not
trivial as the ARMA-model can have deep notches at some frequencies.
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6.6.2 The noise model

Before noise reduction the additive noise is close to white as seen in Sec-
tion 5.2. After noise reduction the additive noise will be colored by the
smoother that acts as low-pass anti-aliasing filter. The coloring of the noise
is thus known and a model Ms(q−1)N−1

s (q−1) for the sub-sampled dynamics
of the noise could be used in the design of the predictor. We will however
use the noise model to robustify the predictor. The estimated signal model
indicates that there is more signal energy at high frequencies than there
actually is. A noise model designed to have more noise at those frequen-
cies than there actually is, will reduce the amplification of those frequency
regions by the predictor.

A suitable and simple noise model is a white noise, where the variance
of the noise is a tuning parameter. The noise gain of the smoother, used
as anti-aliasing filter, times the original estimation error variance, usually
renders IIR-Wiener predictors with good prediction performance. The noise
gain of an FIR smoother is obtained as the squared sum of the coefficients,
that is (w[m])Hw[m] where m is the smoothing lag and w[m] is obtained as
in equation (5.6).

6.6.3 Model estimation

In Section 6.2.4 the least squares algorithm for estimation of predictor co-
efficients for the direct FIR predictor is recapitulated. That method can of
course be used to estimate the parameters of an AR-model too, if only one
smoothing lag is used in the regressor (preferably mmax). The AR-model
has to be monitored to make sure that the model is stable. Poles outside
the unit circle have to be reflected inside, using spectral factorization.

There are a multitude of methods for estimating ARMA-models [50].
Even though the model is sub-sampled, the whole data set should be used
when estimating the model. Generally the Cs(q−1) polynomial is hard to
estimate from a limited amount of data. As the dynamics of the channel
is time varying, the estimation interval will be limited to a few meters. At
a carrier frequency of 2 GHz this corresponds to estimation intervals of no
more than 10-30 wavelengths. Under the assumption of perfect band limited
Doppler spectrum it would be sufficient with 20-60 samples in this interval.
The effective number of samples available for model estimation will thus be
low. The model order thus has to be kept low, if ARMA-models are at all
to be used for channel prediction.
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6.6.4 Use of noise reduction

When designing model based predictors, it is not trivial how to include
the use of smoothed regressors with different smoothing lags. The straight
forward use of smoothed regressor in the direct FIR predictor can also be
applied here, where the coefficients of the Qs(q−1) polynomial take the place
of the FIR-filter coefficients and the autoregressive part with the Rs(q−1)
polynomial is appended afterwards. When evaluated on the data sets of
Chapter 3, this does however not render an improved performance for the
prediction of channels, as compared to using smoothing lag m = 0. The
Kalman filter representation of the IIR Wiener-predictor helps us to inter-
pret this result. The Kalman filter uses the model of the dynamic of the
channel to improve the estimated states. There is thus an internal noise
reduction mechanism in place and the extra noise reduction provided by
using a larger smoothing lag in the noise reduction offers only a minor im-
provement to this. It is thus sufficient to use noise-reduction with lag 0 to
provide the necessary anti-aliasing filtering.

6.7 Results

The performance of the predictors discussed in this Chapter is evaluated on
the measured channels described in Chapter 3. These measured channels
are frequency selective and thus consist of more than one tap. Each tap is
predicted individually and then the channel prediction error is evaluated.

Channel SNR

The channel SNR is the ratio between the average estimation error power
and the channel tap power. For a channel where all the taps have zero mean
the overall channel-to-estimation-error ratio (channel SNR) is

γh =

∑M−1
k=0 σ2

hk∑M−1
k=0 σ2

ek

, (6.76)

where σ2
ek

is the variance of the estimation error on each tap and
∑M−1

k=0 σ2
hk

is the average gain of a channel (also called noise gain).
When the channel estimation interval is short (small time frequency

product), then all the taps in the estimated channel are corrupted by ap-
proximately the same amount of noise power σ2

e = σ2
ek
,∀k, as we saw in
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Section 4.3. The channel SNR can then be expressed as the average of the
individual tap SNRs,

γh =

∑M−1
k=0 σ2

hk

Mσ2
e

=
1
M

M−1∑
k=0

γhk . (6.77)

Performance measures

The complex channel prediction error is

εc(t) = h(t)− ĥ(t|t− L). (6.78)

The performance of the channel predictor is measured as the overall NMSE

Ṽ =
E
{∑M−1

k=0 |εck(t)|2
}

E
{∑M−1

k=0 |hk(t)|2
} . (6.79)

In simulations or evaluation on measured data, the expectations are
approximated by averages over time. For a finite validation set consisting
of channel samples 1 . . . N , the NMSE is thus approximated by the ratio
between the sample averages

Ṽ ≈
1
N

∑N
t=1

∑M−1
k=0 |εck(t)|2

1
N

∑N
t=1

∑M−1
k=0 |hk(t)|2

=
∑N

t=1 ε
H
c (t)εc(t)∑N

t=1 hH(t)h(t)
. (6.80)

In the measurements only noisy observations of the channels are available.
As the true channels are unknown, smoothed estimates of the channels are
used instead to obtain an estimate of the vector of channel tap prediction
errors as outlined in (6.42),

εc(t) ≈ h̃(t|t+m)− ĥ(t|t− L), (6.81)

where m is a smoothing lag that renders close to optimal noise reduction
performance.

The Doppler spread

The normalized Doppler spread for a tap with band-limited dynamics, de-
fined as

BD =
1
fD

√√√√∫ fD−fD(f − fm)2|Hk(f)|2df∫ fD
−fD |Hk(f)|2df

(6.82)
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is a measure for the variation of the tap. Here |Hk(f)|2 is the Doppler
spectrum for tap k and fm is the average Doppler frequency defined as

fm =

∫ fD
−fD f |Hk(f)|2df∫ fD
−fD |Hk(f)|2df

. (6.83)

The upper limit for the normalized Doppler spread is one and for Jakes’s
spectrum BD = 1/

√
2 [37]. A small normalized Doppler spread means that

the energy in the spectrum is highly centered. A large spread means that
there can be energy all over the spectrum. The performance of the prediction
is seen to depend on this measure. The estimated normalized Doppler spread
is generally overestimated for the noisiest taps.

6.7.1 Simulation

The expected performance for prediction of a flat Rayleigh fading channel
with Jakes spectrum will indicate the performance on true measured chan-
nels.

Robust delay spacing

In Section 6.4 a robust delay spacing for prediction of a tap described by
the Jakes model corrupted by white noise was presented. If we include noise
reduction in a first step, both the optimal and the robust choices for the
delay spacing are altered.

The Wiener smoothers, used in noise reduction, depend on the OSR of
the channel and also on the SNR. The performance of the predictor us-
ing smoothed regressors is here evaluated for an OSR of 50 and 25 (the
Doppler frequencies normalized by the channel sampling frequency are then
fD = 0.01 and fD = 0.02 respectively). FIR-Wiener smoothers with 128
coefficients and smoothing lags [0 2 5 10 20] are used in the noise reduc-
tion. Using the results for the covariance of filtered regressors in (6.38)
and (6.41), the performance for the optimal FIR-predictor can be calcu-
lated using (6.13). The NMSE is calculated for SNRs in the range 0-50 dB
and for prediction ranges between 0.1 and 1 wavelength, varying the delay
spacing.

Our finding is that the performance is rather insensitive to the choice of
delay spacing. Just as in Section 6.4 a robust choice of the delay spacing,
that is a function of the number of coefficients of the predictor and of the
prediction range, can be obtained. Tables 6.2 and 6.3 list the robust choices
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Robust delay spacing for OSR=50
Range Number of coefficients M
L [λ] 2 4 8 16 32 64
0.1 0.01 0.01 0.05 0.20 0.20 0.20
0.2 0.01 0.01 0.05 0.20 0.19 0.19
0.3 0.01 0.01 0.05 0.20 0.19 0.19
0.4 0.01 0.01 0.06 0.20 0.19 0.19
0.5 0.01 0.01 0.06 0.20 0.19 0.18
0.6 0.43 0.01 0.06 0.19 0.19 0.18
0.7 0.19 0.01 0.06 0.19 0.19 0.18
0.8 0.01 0.01 0.06 0.19 0.19 0.18

Table 6.2: Robust choice for delay spacing (measured in wavelengths) in the
FIR predictor using smoothed regressors for a tap described by the Jakes
model. The channel is sampled with 100 samples per wavelength and a
Wiener-smoother with 128 coefficients and smoothing lags [0 2 5 10 20] are
used for noise reduction. One sample corresponds to a traveled distance of
0.01 wavelength.

Robust delay spacing for OSR=25
Range Number of coefficients M
L [λ] 2 4 8 16 32 64
0.1 0.02 0.02 0.10 0.22 0.22 0.22
0.2 0.02 0.02 0.10 0.22 0.20 0.20
0.3 0.02 0.02 0.10 0.22 0.20 0.20
0.4 0.02 0.02 0.10 0.20 0.20 0.20
0.5 0.02 0.02 0.10 0.20 0.20 0.20
0.6 0.42 0.02 0.10 0.20 0.20 0.20
0.7 0.18 0.02 0.10 0.20 0.20 0.20
0.8 0.02 0.02 0.10 0.20 0.20 0.20

Table 6.3: Similar to Table 6.2 but for an OSR of 25. The channel is
sampled with 50 samples per wavelength (one channel sample corresponds
to 0.02 wavelength).

for delay spacing of the FIR-predictors for channels with 50 and 25 times
oversampling when a bank of FIR smoother are applied in the first step. The
SNR is assumed to be in the range 10-50 dB. In the following performance
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evaluations, these robust choices of the delay spacing will be used for the FIR
predictor. Delay spacings for OSRs not covered by the tables are obtained
by interpolation or extrapolation of the values in the tables.

Prediction performance

Figure 6.13 shows how predictable a tap described by the Jakes model is
with and without smoothed regressors. The OSR is 50 and the predictor
has eight coefficients and a robust choice of delay spacing, given by Ta-
ble 6.2. The noise reduction is obtained using a bank of FIR smoother with
128 coefficients and the regressor is formed as in Section 6.2.3. By using
smoothed regressors the FIR predictor can obtain the same performance as
the FIR predictor using no noise reduction at 7-9 dB lower SNR.
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Figure 6.13: The prediction NMSE as a function of SNR for different pre-
diction ranges. The tap is described by the Jakes model. The FIR predictor
has 8 coefficients and the performance is shown for smoothed regressor (solid
lines) and no noise reduction (dashed line).

An increase of the number of coefficients from 8 to 32 in the predictor
result in only a minor decrease in the NMSE, as seen in Figure 6.14. The
major gain is attained by the use of noise reduction. The prediction range
can be extended by a tenth of a wavelength at the same performance as for
not using the noise reduction.
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Figure 6.14: The prediction NMSE at 20 dB for a tap described by the Jakes
model as a function of prediction range. Solid and dashed lines corresponds
to smoothed and noisy regressors respectively.

6.7.2 Channel prediction of measured channels

The measurements in the data base described in Chapter 3 are used to
evaluate the performance of the channel prediction methods described in
this Chapter.

Noise reduction

A bank of FIR-Wiener smoothers for a Jakes channel, as in Section 6.2.3,
has been applied to all taps. The SNR and Doppler frequency for the taps
are estimated as in Section 5.2. A ten percent safety margin is added to
the estimated Doppler frequency to avoid a too small bandwidth of the
smoother. The bank of smoothers has smoothing lags [0 20 5 10 20], and
each smoother has 128 coefficients.

As only noisy observations of the channel taps are available, the true
tap is taken as the smoothed tap obtained with smoothing lag 20. This is a
good approximation of the true taps for SNRs above 0 dB.
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Selection of data

A total of 41 measurement locations, out of 80, are used in the evaluation.
The selection of the measurement locations was based on three criteria:

• Only measurements where the estimated average channel-to-estimation-
error power ratio (channel SNR) is above 10 dB are used.

• Measurements where the speed was below 30 km/h are not used as
then the total measurement would cover a distance of less than 8,5
wavelength, which is too short to obtain reasonable prediction perfor-
mance statistics of the channel.

• The algorithms of this Chapter are designed for channels with station-
ary statistics. If abrupt changes were present within the data windows
of 0.14 s, it would be appropriate to use different predictor parameters
before and after the change. To avoid such situations in the evalua-
tion, a few channels where the average power changed by more than
3 dB from the first quarter of the data to the last quarter, were ruled
out.

Predictor design

As most of the prediction performance for a Jakes channel using smoothed
regressors is obtained using only eight coefficients, the FIR predictor for the
the measured channels, using smoothed regressors, has eight coefficients.
The delay spacing is taken from the Tables 6.2 and 6.3. The sample covari-
ance estimates of the correlation matrix for the regressor R̂ϕ from (6.46)
and the cross-correlation vector for regressor and signal r̂xϕ from (6.47) are
used in (6.12) to estimate the predictor coefficients. This simply corresponds
to LS-estimation of the predictor coefficients as in (6.45). Independent of
prediction range, 900 samples are used in the target vector for the train-
ing. The validation interval was on the order of 400 down to 100 samples,
depending on prediction range and Doppler frequency.

The model based predictors have a delay spacing of a tenth of a wave-
length. The AR-models are estimated using LS. All poles that fall outside
the unit circle are reflected inside, using spectral factorization. The ARMA-
models are obtained using the prediction error method (PEM). The variance
of the measurement noise, used as a design variable in the Kalman filter, is
set to the variance of the estimation error, filtered by a FIR smoother using
lag zero. Out of the 1430 samples 900 samples are used for identification of
the models. The remaining 530 samples are used for validation. The model
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estimation interval corresponds to at least 5,4 wavelengths of traveled dis-
tance. The model based Kalman predictors only utilize the signals from the
FIR smoother with lag zero.

Prediction performance on the taps

The tap prediction is highly dependent on the tap SNR and on the normal-
ized Doppler spread as seen in Figure 6.15, where the prediction NMSE for
all the individual taps of the 41 measurements are plotted. The predictor
is the FIR predictor with eight coefficients using smoothed regressors, as
described above. The dependence of the NMSE on the tap SNR and on the
normalized Doppler spread are shown in the left and right columns respec-
tively. Plotted together with the scatter plot for the NMSE dependence on
the SNR is the corresponding theoretical curve for the prediction NMSE for
a tap described by the Jakes model. The OSR of the tap is 50, corresponds
to a vehicle speed of about 50 km/h in these measurements, using the same
noise reduction and predictor as for the measurements are used.

A tap described by the Jakes model has a BD ≈ 0.71. In the measured
channels, taps with both lower and higher normalized Doppler spreads than
0.71 are present. Generally the taps with a lower BD have a lower prediction
NMSE.

For a prediction range of 0.1 wavelength, the tap prediction NMSE is
seen to strongly depend on the SNR. It actually follows the theoretical curve
for a tap described by the Jakes model quite well. The spread in performance
increase when the prediction range increase. On the other hand, the taps
with small Doppler spread remains well predictable even at a prediction
range of half a wavelength. This group of taps is also seen in the SNR plots
as a smaller cluster with better NMSE below the large cloud of taps. Thus,
for short prediction ranges the tap SNR is the most important factor for the
performance. For longer prediction ranges, the dynamics of the taps play a
more important role.

Prediction performance on the channel

The median prediction NMSE (6.80) over the 41 measured channels is seen
in Figure 6.16. The difference in median performance between the applied
prediction methods is quite small,whereas the spread in predictability of the
channels among the different measurements is quite dramatic. The Kalman
predictor based on the estimated ARMA-model is actually a little bit worse
than the predictor based on an AR-model. This is solely due to the sig-
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Figure 6.15: The tap prediction NMSE as a function of SNR and normalized
Doppler spread for the individual taps for the prediction ranges 0.1, 0.3 and
0.5 wavelengths. The gray lines are the theoretical NMSE for prediction of
a tap described by the Jakes model, for an OSR of 50 as in Figure 6.13.
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nificant model estimation error obtained on such short estimation intervals.
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Figure 6.16: The median channel prediction NMSE for indirect model-
based Kalman predictors based on ARMA 6,2 (dashed line) and AR 6
(dash-dotted line) models for the dynamics. These predictors only use
noise reduction with smoothing lag zero. The direct LS-estimated FIR
predictor with eight coefficient using smoothed regressors with as large lags
as possible (solid line) is slightly better than the others. The gray lines are
the NMSE for the 41 individual channels, using the FIR predictor.

The scatter plots in Figures 6.17, 6.18 and 6.19 show the prediction
NMSE as a function of channel SNR, for the 41 different measured channels.
The FIR predictor with eight coefficients is used. The attained prediction
NMSE strongly depends on the channel SNR. For longer prediction ranges
the dependence on the channel SNR decreases, as then the dynamics for
the individual channels play a larger role. This results in a larger spread in
prediction NMSE, as seen in Figure 6.19.

6.8 Conclusion

• Noise reduction is crucial for the performance of the channel predic-
tion.

– A bank of Wiener-smoothers with different lags can be used to
produce regressors where all the regressor variables have the at
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Figure 6.17: A scatter plot of the channel prediction NMSE at L = 0.1λ as
a function of channel SNR when using an FIR predictor with 8 coefficients.
Smoothed regressors are used. The gray line is the theoretical NMSE for
prediction of one single tap described by the Jakes model for an OSR of 50,
as in Figure 6.13
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Figure 6.18: scatter plot of the channel prediction NMSE just as in Fig-
ure 6.17 but for a prediction range of 0.3λ.
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Figure 6.19: Just as Figure 6.17 but for a prediction range of half a wave-
length. The spread in performance is much larger for the longer prediction
range.

the time best available noise reduction.

– The Wiener-smoothers based on the Jakes model act as anti-
aliasing filters, facilitating for sub-sampled predictors.

– Noise reduction reduces the number of predictor coefficients that
are necessary for attaining a given performance.

• Iterative prediction is only optimal in the case of no estimation error
on the channel.

• Instead of iterative prediction, model based Kalman or Wiener predic-
tors should be used, taking the tap estimation error into account.

• The tap-prediction performance of an FIR-predictor can be highly
improved by use of smoothed regressors.

• The delay spacing of the predictor strongly influences the performance
of the prediction.

• Robust choices of the delay spacing have been obtained for both smoothed
and noisy regressors.

• Performance evaluation on measured channels:
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– There is a large spread in prediction performance among the mea-
sured channels.

– The channel prediction performance is highly dependent on the
channel SNR.

– For longer prediction ranges the spread in performance is larger,
as then the dynamics of the individual taps play a major role in
addition to the channel SNR.

– The performance for the direct FIR predictor using smoothed re-
gressors and the Wiener predictor using AR- and ARMA-models
is quite similar.
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Chapter 7

Power Prediction Based on
Linear Regression

7.1 Introduction

In this Chapter we will cover how to go from linear prediction of the complex
valued tap to quadratic prediction of the power. Direct use of the absolute
square of the complex valued prediction is shown to render a biased power
predictor (Section 7.2.1). The unbiased quadratic predictor, that is optimal
in the MSE sense, is derived in Section 7.2.2 and it is shown that the same
prediction coefficients that are optimal for the linear prediction of the com-
plex valued tap are optimal also for the unbiased quadratic predictor for the
power, under the assumption of Rayleigh fading [61]. The joint probability
density function of the true and predicted power, a bivariate gamma distri-
bution, is derived in Section 7.4 for this predictor. The distributions will be
used in Chapter 8 in the design of a link adaptation system.

In Section 7.5 the performance of the unbiased quadratic predictor is
compared to a linear power predictor, that uses old and present observations
of the observed power instead of the observed complex valued time series.
The linear power predictor is expressed in terms of the covariance sequences
for the complex valued time series and noise. The correlation function for
the power is obtained as the absolute square of the correlation function for
the tap. It thus decays much faster than the correlation function for the
complex tap, which result in a prediction performance that is worse than
for the unbiased quadratic predictor.

In Section 7.6 the estimate of the local average of the power and its use
as a power prediction is analyzed. To obtain reliable estimates of the average

159
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power the estimation interval need to be several tenths of wavelengths.
The proposed power predictors are evaluated on measured mobile radio

channels. The results, presented in Section 7.7, are compared to the theoret-
ical results for prediction of the power of a tap described by the Jakes model.
The attained power prediction NMSE is found to be highly dependent on
the channel estimation error.

7.2 Power Prediction using Complex Regressors

It is the power of the signal h(t) in (6.1) that is of main interest to our
investigation, that is, the absolute square of the complex value,

p(t) = |h(t)|2. (7.1)

The average error and the MSE of FIR power predictors that use the re-
gression vector (6.5), containing delayed noisy measurements, are studied in
this section. The signal h(t) and the noise e(t) are assumed to have zero
mean and circular Gaussian distributions.

7.2.1 The absolute square: A biased quadratic predictor

We first examine the use of |ĥ(t + L|t)|2, with ĥ(t + L|t) given by (6.4), as
a power predictor,

p̂b(t+ L|t) = |ĥ(t + L|t)|2 = θHϕ(t)ϕH(t)θ. (7.2)

This predictor utilizes quadratic functions of the regressor variables and is
thus a nonlinear predictor. The power prediction error is then given by

εpb(t) = |h(t)|2 − |ĥ(t|t− L)|2. (7.3)

This predictor for the power is used for channel prediction in e.g. [22] and
[55].

The bias

The average error will be

E{εpb(t)} = E{|h(t)|2 − |ĥ(t|t− L)|2}
= σ2

h − θHE{ϕ(t− L)ϕH(t− L)}θ
= σ2

h − θHRϕθ. (7.4)
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If the optimal coefficients for the complex predictor (6.12) are used in the
expression (7.4) for the average error, then we obtain

E{εpb(t)} = σ2
h − rhϕR−1

ϕ rhϕ = σ2
εc . (7.5)

The absolute square of the complex prediction is thus a biased power pre-
dictor. When using the optimal prediction coefficients for the complex pre-
dictor, this bias becomes equal to the variance of the complex prediction
error. The power of h(t) is thus underestimated, which could be seen al-
ready in (6.18).

The MSE for the biased power predictor

When using the FIR predictor (6.4) the MSE for the power prediction error
in (7.3) becomes

E{|εpb(t)|2} = E{(|h(t)|2 − |ĥ(t|t− L)|2)2}
=E{|h(t)|4 − 2|h(t)|2|ĥ(t|t− L)|2 + |ĥ(t|t− L)|4}
=E{|h(t)|4}−2θE{|h(t)|2ϕ(t−L)ϕH(t−L)}θ + E{|θHϕ(t−L)ϕH(t−L)θ|2}.

(7.6)

In Appendix 7.B it is shown that this MSE can be expressed in terms of
covariances, as

E{|εpb(t)|2} = 2σ4
h − 2θHrhϕrHhϕθ − 2σ2

hθ
HRϕθ + 2|θHRϕθ|2. (7.7)

This is the criterion that should be minimized to obtain the coefficient vector
θ that provides the best power predictor of the type (7.2).

Suboptimal MSE for the biased predictor

If the prediction coefficients that by (6.12) are optimal for the complex
prediction, θc = R−1

ϕ rhϕ, are used and the absolute square of the complex
prediction (7.2) is used as the power prediction, then the MSE, according
to (7.7), will be

E{|εpb(t)|2} = 2σ4
h − 2|rHhϕR−1

ϕ rhϕ|2 − 2σ2
hr
H
hϕR−1

ϕ rhϕ + 2|rHhϕR−1
ϕ rhϕ|2

= 2σ2
h(σ2

h − rHhϕR−1
ϕ rhϕ) (7.8)

= 2σ2
hσ

2
εc . (7.9)

The MSE in the power prediction will thus be proportional to the variance
of the complex prediction error.
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7.2.2 Unbiased quadratic power prediction

To avoid the bias introduced when using (7.2) we propose an unbiased power
predictor which utilizes quadratic functions of the regressor variables

p̂(t + L|t) = θHϕ(t)ϕH(t)θ + σ2
h − θHRϕθ. (7.10)

This corresponds to the absolute square of the complex prediction as in
(7.2), but with compensation for the bias,

p̂(t+ L|t) = |ĥ(t + L|t)|2 + σ2
h − θHRϕθ = |ĥ(t + L|t)|2 + σ2

h − σ2
ĥ
, (7.11)

where we have used (6.17). To get an unbiased power estimate, the variance
of the complex prediction is subtracted and the variance of the true signal
is added instead. The prediction error is then given as

εp(t) = p(t)− p̂(t|t− L), (7.12)

and it will have zero mean.
In order to obtain the variance of the power prediction error, we use the

relationship between autocorrelation and variance

E{|v −mv|2} = E{|v|2} − E{v∗}mv − E{v}m∗v + |mv|2

= E{|v|2} − |mv|2 (7.13)

where v is a random variable and E{v} = mv is its mean. As the predictor
in (7.10) is the same as in (7.2) but with the bias removed, the variance
for the power prediction error, when using the unbiased power predictor, is
given by the difference between (7.7) and the square of the bias (7.4),

σ2
εp = E{|εp(t)|2}

= 2σ4
h − 2θHrhϕrHhϕθ − 2σ2

hθ
HRϕθ + 2|θHRϕθ|2 − |σ2

h − θHRϕθ|2

= σ4
h − 2θHrhϕrHhϕθ + |θHRϕθ|2. (7.14)

As this predictor has no bias, the variance and the MSE coincide. We sum-
marize the discussion above in the following result.

Theorem 7.1 Let a predictor of a power signal p(t) = |h(t)|2, with h(t) ∈
CN(0, σ2

h), have the structure

p̂(t+ L|t) = θHϕ(t)ϕH(t)θ + σ2
h − θHRϕθ
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where ϕ(t) is a column vector containing regressors with covariance matrix
Rϕ. A coefficient vector θ that minimizes the corresponding MSE

σ2
εp = σ2

h − 2θHrhϕrHhϕθ + |θHRϕθ|2

is then given by
θ = R−1

ϕ rhϕ

with rhϕ = E{h(t)ϕ(t− L)}.

Proof 7.1 To find the θ that minimizes σ2
εp, we take the partial derivative

of the MSE with respect to θ and set it equal to zero

∂σ2
εp

∂θ
= −2θHrhϕrHhϕ + 2θHRϕθθ

HRϕ = 0

which results in the equation

θH(rhϕrHhϕ −Rϕθθ
HRϕ) = 0

Here θ = 0 is the trivial solution. The other solutions are given by

θθH = R−1
ϕ rhϕrHhϕR−1

ϕ .

One obvious solution is θ = θp, with

θp = R−1
ϕ rhϕ. (7.15)

�

Note that θp by (7.15) is identical to the coefficient vector θc (6.12) that
minimizes the MSE (6.8) when predicting the complex signal h(t). The
solution (7.15) is however not unique. Actually all θp that satisfy θp = eiϑθc,
with ϑ ∈ [0 2π[, are solutions. This is because the phase information becomes
irrelevant when the absolute square is taken.

The MSE-optimal quadratic unbiased predictor

Using the optimal coefficients for a complex Gaussian signal, the power
predictor in (7.10) can by (6.12) and (6.13) be written as

p̂(t + L|t) = |ĥ(t + L|t)|2 + σ2
h − rHhϕR−1

ϕ rhϕ (7.16)

= |ĥ(t + L|t)|2 + σ2
εc. (7.17)
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The optimal unbiased quadratic power predictor (7.10), is thus the sum of
the absolute square of the optimal linear prediction of the complex signal
h(t) and the variance of the complex prediction error. Its mean value is
readily obtained from (6.17) and (6.18) as being equal to the true average
power,

E{p̂(t+ L|t)} = σ2
ĥ

+ σ2
εc = σ2

h. (7.18)

Note that when using this predictor, the predicted power will never be less
than σ2

εc , that is the variance of the complex prediction error. This means
that it will not predict zero power even when the complex prediction indi-
cates a deep fading dip (ĥ(t + L|t) = 0).

The minimum MSE and correlation for the unbiased predictor

The optimal unbiased quadratic power predictor results in a minimum power
MSE, obtained by inserting θp, from (7.15), into (7.14),

min
θ
σ2
εp = σ4

h − 2rHhϕR−1
ϕ rhϕrHhϕR−1

ϕ rhϕ + |rHhϕR−1
ϕ RϕR−1

ϕ rhϕ|2

= σ4
h − |rHhϕR−1

ϕ rhϕ|2. (7.19)

This can also be expressed in terms of the variance (6.13) of the complex
prediction error using the optimal predictor,

min
θ
σ2
εp = σ4

h − |σ2
h − σ2

εc|
2 = σ2

εc(2σ
2
h − σ2

εc). (7.20)

The variance of the power prediction error is thus bounded as 0 ≤ σ2
εp ≤ σ4

h

and it increases monotonicly with σ2
εc, when the optimal coefficients are

used.
In Appendix 7.A the following expressions, useful for characterizing the

properties of the power predictor (7.17), are derived. Using (6.18) and (7.18)
the variance for the unbiased power prediction is

σ2
p̂ = E{(p̂(t+ L|t)− σ2

h)2} = σ4
ĥ

= |rHhϕR−1
ϕ rhϕ|2 = |σ2

h − σ2
εc|

2, (7.21)

see (7.106) and (7.108). The variance for the predicted power is thus lower
than for the true power. The cross-correlation between the predicted power
and the power prediction error is

ρp̂εp = E{p̂(t|t− L)εp(t)} = 0. (7.22)

Hence, using the optimal coefficients in the prediction, there is no correlation
between the predicted power and the prediction error that could be further
utilized by adding a linear function of εp(t) to the predictor.
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7.2.3 Comparison of performance

The results above can be used to compare the performance of the unbiased
power predictor and the biased version. In both cases the coefficients that
are optimal for the complex prediction is used. As the NMSE for the complex
prediction error is bounded by 0 ≤ σ2

εc/σ
2
h ≤ 1, when optimal coefficients

are used, we can evaluate the NMSE for the power prediction for all possible
NMSE’s for the linear complex prediction error using (7.9) and (7.20). The
power prediction NMSE for the biased predictor is thus

Vbiased =
2σ2

hσ
2
εc

2σ4
h

=
σ2
εc

σ2
h

, (7.23)

which happens to equal the NMSE for the linear complex prediction.
The NMSE for the unbiased quadratic predictor can also be expressed

in terms of the NMSE for the linear complex prediction,

Vunbiased =
σ2
εc(2σ

2
h − σ2

εc)
2σ4

h

=
σ2
εc

σ2
h

(
1−

σ2
εc

2σ2
h

)
. (7.24)

In Figure 7.1, the performance at different complex NMSE are shown. We
see that it is mainly when the complex time signal is hard to predict that the
benefit of using the unbiased predictor is fully exploited. The very simplest
power predictor, just using the average power p̄ = σ2

h, has an MSE that is
equal to half the variance of the power (which is σ2

p = 2σ4
h),

E{(p(t)− p̄)2} = E{p2(t)} − p̄2 = 2σ4
h − σ4

h = σ4
h =

σ2
p

2
. (7.25)

The biased predictor deploying θc will actually be worse than prediction
using the average, for cases where σ2

εc > 0.5.
The difference in the performance can be understood like this: Even

when the complex prediction totally fails and θ = 0 are the best coefficients
for the prediction of the complex signal, the optimal unbiased quadratic
power predictor sets the prediction to the average power, whereas the biased
predictor predicts the power to be zero. On the other hand, when the
complex prediction improves, the bias will decrease and the gain obtained
by using the unbiased predictor will be reduced.

7.2.4 Prediction based on observed time-series

In this subsection we briefly discuss the case where the statistics of the
signal h(t) is unknown and that only the observations y(t) are available.
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of the complex time series h(t) is assumed. Equation (7.23) and (7.24) are
used to evaluate the NMSE for the biased and unbiased power predictor
respectively.

The statistics of y(t) can be estimated from the time-series and is assumed
known. The complex predictor can then be designed to minimize the MSE
for the predicted complex observation

E{|εy(t)|2} = E{|y(t)−ϕH(t− L)θ|2}, (7.26)

where the regressor vector ϕ(t− L) is given by (6.5). Following the results
in Section 6.2, Wiener optimization of this predictor results in the optimal
coefficients

θy = R−1
ϕ ryϕ = R−1

ϕ (rhϕ + reϕ) (7.27)

where ryϕ is the cross-covariance between the observed complex time signal
and the regressor and reϕ is the cross-covariance between noise and regressor.

As in Section 7.2.2, for the true power of h(t+L), we obtain the optimal
quadratic power predictor for the observed power of y(t+ L) as

p̂y(t+ L|t) = |ϕH(t)R−1
ϕ ryϕ|2 + σ2

εy . (7.28)

This is not the optimal quadratic prediction of the true power p(t) of h(t),
as the prediction coefficients θy are used instead of the unknown coefficients
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θp that are obtained in (7.15). If the variance of the observation noise is
available, at least an unbiased predictor of the power of h(t + L) can be
obtained as

p̂(t + L|t) = p̂y(t+ L|t)− re. (7.29)

If the auto-correlation of the noise is zero for lags larger than L, then rhϕ =
ryϕ, and consequently (7.29) will actually be the MSE-optimal quadratic
predictor of the power of h(t + L).

7.3 Unbiased Quadratic Power Prediction of a Fre-
quency Selective Channel

A frequency selective channel can be modeled as a time varying FIR-filter
h(t), where each tap hk(t), can be seen as a flat Rayleigh fading channel.
The total power is thus the sum of the power contribution from each tap,

p(t) =
M∑
k=1

pk(t) =
M∑
k=1

|hk(t)|2. (7.30)

The linear regression

ĥk(t + L|t) = ϕHk (t)θk , (7.31)

represents an L step ahead FIR-prediction of the channel tap hk(t). Here, θk
is the vector of predictor coefficients for tap k. The regression vector ϕk(t)
consists of possibly smoothed observations of the tap hk(t), up to time t, as
in (6.31).

The unbiased power predictor (7.10) for tap k is then obtained as

p̂k(t+ L|t) = |ĥk(t + L|t)|2 + σ2
hk
− θHk Rϕkθk , (7.32)

where σ2
hk

= E{|hk(t)|2} and ĥk(t + L|t) is given by (7.31).
As each tap of a frequency selective channel can be regarded as a flat

Rayleigh fading channel, that is hk(t) ∼ CN(0, σ2
hk

), the optimal choice of
θk is then obtained as in (7.15),

θk = R−1
ϕk

rhkϕk , (7.33)

where Rϕk is the covariance matrix for the regressor to tap k and rhkϕk =
E{hk(t)ϕk(t)}.
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An unbiased predictor for the total power is finally obtained by summing
the contributions from each significant tap

p̂(t+ L|t) =
n∑
k=1

p̂k(t+ L|t) =
n∑
k=1

(
|ĥk(t + L|t)|2 + σ2

hk
− θHk Rϕkθk

)
.

(7.34)
If all channel taps are unpredictable, then the channel power will be pre-
dicted by its average

∑
k σ

2
hk

. In receivers that use only a subset of the
taps, the available power is the sum over this subset. The predicted avail-
able power is then the sum over the predictions for this subset, whereas the
other taps act as interference.

In Section 7.7 this method will be used for power prediction on measured
frequency selective channels. Only the taps that significantly contribute to
the total power has to be predicted. The power contribution from the other
taps can be seen as a minor disturbance.

7.4 Distributions for Power, Prediction and Error

To be able to analyze the performance of the predictor it is not sufficient
to know the mean and variance of the prediction error. To fully describe
the properties of the predictor we need the probability density functions for
the true and the predicted power. It is especially relevant to study the joint
probability density function, which can be used to analyze the performance
of a system using the predictor. In Chapter 8 the derived pdf’s are used to to
obtain the optimal boundaries for changing the modulation in an adaptive
modulation system.

7.4.1 Distributions of the power and the predicted power

Consider the channel model (6.1). The signal x(t), the noise e(t) and the
observation y(t), are assumed to be complex circular Gaussian random vari-
ables, thus CN distributed, with zero mean. The same holds for the predic-
tion, ĥ(t+L|t), as it is composed by linear filtering of the Gaussian sequence
y(t). (In general, linear filtering will make the distribution of the filter out-
put, approximate a Gaussian distribution better than the distribution of the
input does.) The complex prediction error, εc(t), cf (6.7) will thus also be
CN distributed, as it only consist of sums of other CN distributed variables.
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The pdf for power

Let z be a complex circular Gaussian random variable with zero mean and
variance σ2

z , that is z ∈ CN(0, σ2
z ). Then, pz = |z|2 will have a χ2(2)

distribution [62]. The pdf for a χ2(2) distribution is exponential in pz,

fpz(pz) =
1
σ2
z

e−pz/σ
2
zU(pz), (7.35)

where U(·) is Heaviside’s step function. The mean of pz is the variance of
the complex variable, mpz = σ2

z , and the variance of pz is σ2
pz = σ4

z .
As the absolute square of a CN distributed random variable is χ2(2)

distributed, the true power p(t) and the observed power py(t), will both be
χ2(2) distributed.

The pdf for the predicted power

The biased quadratic predictor (7.2) is χ2(2) distributed as well, since ĥ(t+
L|t) will be CN distributed. The distribution of the unbiased quadratic
predictor (7.11)

p̂(t+ L|t) = |ĥ(t + L|t)|2 + σ2
h − θHRϕθ, (7.36)

will therefore be a shifted χ2(2) distribution. Using that the variance σ2
ĥ

of
the complex prediction is θHRϕθ, according to (6.17), this distribution can
be expressed in terms of the distribution of

|ĥ(t+ L|t)|2 = p̂(t+ L|t)− σ2
h + σ2

ĥ
(7.37)

as

fp̂(p̂(t + L|t)) =
1
σ2
ĥ

e−(p̂(t+L|t)−σ2
h+σ

2
ĥ

)/σ2
ĥU
(
p̂(t+L|t)−σ2

h+σ2
ĥ

)
. (7.38)

More conveniently, the pdf can also be expressed using the variances of the
signal and the complex prediction error, using σ2

ĥ
= σ2

h − σ2
εc from (6.18)

fp̂(p̂(t + L|t)) =
U
(
p̂(t+L|t)−σ2

εc

)
σ2
h − σ2

εc

exp
(
−
p̂(t + L|t)− σ2

εc

σ2
h − σ2

εc

)
. (7.39)
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7.4.2 The joint probability density for the true and the pre-
dicted power

The joint probability density function (jpdf) for the true and predicted power
can be used to obtain results for bit error rates for certain communication
systems that use linear smoothing or prediction of the channel [7]. To obtain
the jpdf, we start with two correlated CN distributed stochastic variables
h and ĥ (in the following the time indices are dropped for notational conve-
nience). As both |h|2 and |ĥ|2 are χ2(2) distributed, their joint probability
density is a bivariate χ2 distribution (also called bivariate Γ distribution).
From Appendix 7.C we have that the jpdf between two χ2(2) distributed
stochastic variables, formed by the absolute squares of two zero mean CN
distributed variables h and ĥ, is

f|h|2|ĥ|2(|h|2, |ĥ|2) =

1
σ2
hσ

2
ĥ
−|rhĥ|2

exp

(
σ2
hσ

2
ĥ

|rhĥ|2−σ2
hσ

2
ĥ

(
|h|2
σ2
h

+
|ĥ|2
σ2
ĥ

))
I0

(
2|rhĥ||h||ĥ|
σ2
hσ

2
ĥ
−|rhĥ|2

)
, (7.40)

where σ2
h and σ2

ĥ
are the variances for h and ĥ respectively, and where

rhĥ is the cross-covariance between h and ĥ. Here I0(·) is the modified
Bessel function of the first kind of order zero (it is obtained by inserting an
imaginary argument into the ordinary Bessel function of the first kind of
order zero, and it does not decay with increasing argument).

Assume now that h and ĥ in (7.40) relate to the complex signal in (6.1)
and its prediction by (6.4). Using linear prediction, we know from (6.14)
that rhĥ = θHrhϕ and from (6.17) that σ2

ĥ
= θHRϕθ. The jpdf for the true

power p = |h|2 and the predicted power using the biased quadratic predictor
p̂b = |ĥ|2, is then given by (7.40). As in (7.36), the biased power prediction
can be expressed in terms of the unbiased power predictor as

p̂b = |ĥ|2 = p̂− σ2
h + σ2

ĥ
. (7.41)

For the unbiased power predictor p̂, using (6.14), (6.17) and performing the
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variable substitution (7.41) above in (7.40) the jpdf thus is

fpp̂(p, p̂) =
U(p)U(p̂−σ2

h + σ2
ĥ
)

σ2
hσ

2
ĥ
−|rhĥ|2

×

exp

(
σ2
hσ

2
ĥ

|rhĥ|2−σ2
hσ

2
ĥ

(
p

σ2
h

+
p̂− σ2

h + σ2
ĥ

σ2
ĥ

))
I0

2|rhĥ|
√
p(p̂− σ2

h + σ2
ĥ
)

σ2
hσ

2
ĥ
−|rhĥ|2

 ,

(7.42)

with rhĥ = θHrhϕ and σ2
ĥ

= θHRϕθ. Note that since |h|2 and |ĥ|2 in (7.40)
are always positive, the step-functions are included in (7.42) to ensure that
the arguments remain positive.

If the predictor coefficients θ = R−1
ϕ rhϕ, that minimizes the MSE for the

power (7.15), are used in the unbiased quadratic power predictor, we can
perform the substitution

σ2
h − σ2

εc = σ2
ĥ

= rhĥ (7.43)

from (6.18) and (6.16). Then, the jpdf for p and p̂ in (7.42) can be expressed
as1

fpp̂(p, p̂) =
U(p)U(p̂−σ2

εc)
σ2
εc(σ

2
h−σ2

εc)
exp
(
− p

σ2
εc

−
(p̂−σ2

εc)σ
2
h

(σ2
h−σ2

εc)σ
2
εc

)
I0

(
2
σ2
εc

√
p(p̂−σ2

εc)
)
.

(7.44)
The jpdf for the true and the predicted power, using the optimal unbiased
quadratic predictor, can thus be expressed in terms of the variance σ2

h of
the complex time series h(t) and the variance σ2

εc of the complex prediction
error εc(t) = h(t)− ĥ(t|t− L).

For prediction of a the power of a tap in a mobile radio channel it is
convenient to express the jpdf in terms of the prediction error variance, or
of the received SNR in a communication system. Statistics expressed in this
way will be directly applicable in the evaluation of communication systems
that utilize power prediction. This is exemplified in the study of optimized
link adaption in Chapter 8.

1The corresponding jpdf for the true power and the biased quadratic power prediction
is obtained by the variable substitution p̂ = p̂b + σ2

εc .
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7.4.3 Conditional probability density functions

Conditional probability density function for the true power

To be able to evaluate the performance of a system utilizing predicted powers
we need to know the statistical behavior of the true power given the predic-
tion. The conditional probability density function (cpdf) for the power is
thus of great interest. It can be obtained as

fpp̂(p|p̂) =
fpp̂(p, p̂)
fp̂(p̂)

, (7.45)

where the division only is performed in the region where fp̂(p̂) 6= 0. The cpdf
for p and p̂ can then be obtained by inserting (7.39) and (7.44) in (7.45),
yielding

fpp̂(p|p̂) =
U(p)U(p̂−σ2

εc)
σ2
εc

exp
(
−
p+ p̂− σ2

εc

σ2
εc

)
I0

(
2
σ2
εc

√
p(p̂−σ2

εc)
)
. (7.46)

In Chapter 8 this expression is used in the design and performance evaluation
of a system with link adaption.

The conditional prediction error density

The conditional pdf for the power prediction error εp, using the unbiased
power predictor (7.10) with the optimal parameters (7.15) can be obtained
from (7.46), using the transformation p = p̂+ εp,

fεp(εp|p̂) =

U(p̂+ εp)U(p̂ − σ2
εc)

σ2
εc

exp
(
−
εp + 2p̂− σ2

εc

σ2
εc

)
I0

(
2
σ2
εc

√
(p̂− σ2

εc)(p̂+ εp)
)
.

(7.47)

The predictor error has zero mean for all p̂, as shown in (7.136) Ap-
pendix 7.C.2, but the variance of the prediction error σ2

εp , obtained as
in (7.144) Appendix 7.C.2, depends on the prediction

σ2
εp(p̂) = σ2

εc(2p̂− σ
2
εc). (7.48)

The relative standard deviation σεp(p̂)/p̂ is seen in Figure 7.2. The relative
uncertainty is thus largest for the smallest predicted powers.

The predicted power is in the range σ2
εc ≤ p̂ <∞ and the prediction error

is in the range −p̂ ≤ εp <∞. For p̂ = σ2
εc (obtained when ĥ(t+L|t) = 0), the
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Figure 7.2: The relative standard deviation for the predicted power σεp/p̂
as a function of p̂ for different variances for the complex channel prediction
error.

power prediction error has a χ2(2) distribution shifted to the left. When the
prediction p̂ increases the distribution for the error becomes more Gaussian
and its variance increases according to (7.48).

Example 7.1

Let the variance of the signal be σ2
h = 1, and let the NMSE and the vari-

ance of the complex prediction error be σ2
εc = 0.1. Then the NMSE for the

power prediction is 0.095 by (7.24). The pdf for the prediction error con-
ditioned on the predicted power according to equation (7.47) is depicted
in Figure 7.3. As seen in Figure 7.3, and calculated in Appendix 7.C.2,
the power prediction error has a χ2(2) like pdf for small power predictions
p̂, but as p̂ increases, the pdf for the error becomes more Gaussian. Thus,
when the the power is predicted to be high, the error is symmetric around
the predicted value which is not the case for low predicted powers. The
pdf is much wider for high predicted powers than for low. The variance
for the power prediction error is thus seen to increase with the predicted
power, which is in accordance with (7.48).
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Figure 7.3: The conditional pdf (7.47) for the prediction error conditioned
on the predicted power, with σ2

h = 1 and σ2
εc = 0.1.

7.4.4 The prediction error probability density

In the following, we consider the optimal unbiased quadratic power predic-
tor (7.17) of Section 7.2.2. To derive the probability density function of the
prediction error for the power, we express the error in terms of the complex
linear prediction and its corresponding prediction error,

εp(t) = p(t)− p̂(t|t− L) = |h(t)|2 − |ĥ(t|t− L)|2 − σ2
εc

= |ĥ(t|t− L) + εc(t)|2 − |ĥ(t|t− L)|2 − σ2
εc

= |εc(t)|2 + ĥ(t|t− L)ε∗c(t) + ĥ∗(t|t− L)εc(t)− σ2
εc (7.49)

Using the optimal predictor coefficients θc, the prediction ĥ(t|t−L) and the
prediction error εc(t) will, according to equation (7.22), be uncorrelated.
This highly simplifies the derivation of the distributions.

The pdf for the error

The pdf for the power prediction error using optimal linear prediction, as
derived in Appendix 7.C.3, can be expressed in terms of the variance of the
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complex prediction error and the variance of the complex time series as

fεp(εp) =

{
1

ρ++ρ−
e−(εp+σ2

εc
)/ρ+ for εp ≥ −σ2

εc
1

ρ++ρ−
e(εp+σ2

εc)/ρ− otherwise
(7.50)

with

ρ± =
1
2

(√
σ2
εc(4σ

2
h − 3σ2

εc)± σ
2
εc

)
=
σ2
h

2

(√
σ2
εc

σ2
h

(
4− 3

σ2
εc

σ2
h

)
±
σ2
εc

σ2
h

)
.

(7.51)
This is a skew Laplacian distribution which is heavy to the front. In the
pdf the exponential fall-off is faster for errors that are more negative than
minus the variance of the complex prediction error, than for errors that are
larger. Due to the use of the unbiased power predictor E{εp} = 0. The
smaller the ratio between the variance of the complex prediction error and
the variance of the channel is, the more symmetric is the distribution for
the power prediction error.

Example 7.2

Let the variance of the signal be σ2
h = 1, and consider the pdf for the

variances 0.1 and 0.5 for the complex prediction error. The NMSE for the
unbiased power prediction is then 0.095 and 0.375 respectively, by (7.24).
Figure 7.2 depicts the pdf for the power prediction error according to
equation (7.50) and (7.51). The power prediction error is the result of the
subtraction between two stochastic variables with asymmetrical one sided
distributions. The result will thus be a skew distribution. The distribu-
tion becomes more skew when the variance σ2

εc , of the complex prediction
error increases, as also seen directly in (7.51). When the variance for the
complex prediction error σ2

εc approaches σ2
h then ρ+ → σ2

h and ρ− → 0.
The peak in the distribution, that is the most likely outcome, is not at
zero but at −σ2

εc. The most likely value for the power prediction error is
thus εp = −σ2

εc , but on average it will be zero. This is an effect of the bias
compensation.
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Figure 7.4: The pdf for the power prediction error when σ2
εc = 0.1, solid

line, and σ2
εc = 0.5, dotted line. (Linear scale to the left and logarithmic

scale to the right.)

7.5 Linear Power Prediction using Observed Power

in the Regressor

A linear power predictor using observed power in the regressor can be derived
in a similar manner as the linear predictor for the complex time series h(t).
In this section we will show that the performance of the this power predictor
can be expressed using the same covariances as for the complex predictor.

7.5.1 Linear power prediction

For the signal h(t) by (6.1), the true power is p(t) = |h(t)|2, whereas the
observed power is

py(t) = |y(t)|2 = |h(t) + e(t)|2 = |h(t)|2 + h(t)e∗(t) + x∗(t)e(t) + |e(t)|2 .
(7.52)

The noise on the power is thus both multiplicative and additive. Just as
for the complex signal, a linear predictor for the power time series can be
expressed as (cf. (7.104))

p̂(t + L|t) = φT (t)ϑ+ p̄ , (7.53)

where ϑ is the vector of predictor coefficients and p̄ is the average power of
p(t). It is beneficial for the linear predictor to have a regressor with zero
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mean and then to add the mean afterwards, as in (7.53). The regressor thus
consists of the power observations with their average subtracted,

φ(t) = [py(t)− p̄y py(t−∆t)− p̄y . . . py(t− (M − 1)∆t)− p̄y]T . (7.54)

The average power of h(t) is

p̄ = E{p(t)} = E{|h(t)|2} = σ2
h , (7.55)

which is the variance of the complex time series h(t). For the observations
y(t), the average power is

p̄y = E{py(t)} = E{|h(t) + e(t)|2}
= E{|h(t)|2}+ E{h(t)e∗(t)}+ E{x∗(t)e(t)} + E{|e(t)|2}
= σ2

h + σ2
e , (7.56)

which is the sum of the variances for signal and noise respectively.
The prediction error resulting from the use of the predictor (7.53) is

εp(t) = p(t)− p̂(t|t− L) = p(t)− p̄− φT (t− L)ϑ . (7.57)

The first two terms on the last line p(t)− p̄ = |h(t)|2−σ2
h represent the time

series for the power with the mean subtracted.
The MSE for the prediction is

E|εp(t)|2 = E{|p(t)− p̄− φT (t− L)ϑ|2}
= E{|p(t)− σ2

h|2} − E{ϑTφ(t− L)(p(t)− σ2
h)}

−E{(p(t)− σ2
h)φT (t− L)ϑ}+ E{ϑTφ(t− L)φT (t− L)ϑ}

= σ4
h − ϑT rpφ − rTpφϑ+ ϑTRφϑ , (7.58)

where rpφ is the cross-covariance between p(t) and the regressor φ(t−L) and
where Rφ is the covariance matrix of the regressor. In (7.58), we exploited
that, since h(t) ∈ CN(0, σ2

h) and is circular, the variance of the power can
be expressed as

σ2
p = E{|p(t)− p̄|2} = E{|h(t)|2 − σ2

h|2}
= E{|h(t)|4} − 2E{|h(t)|2}σ2

h + σ4
h

= 2σ4
h − 2σ4

h + σ4
h = σ4

h . (7.59)

According to the Wiener-Hopf equations, the coefficients of a linear predic-
tor (7.53) that minimize the MSE in (7.58) are given by

ϑ = R−1
φ rpφ . (7.60)
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In Appendix 7.A.2, equation (7.116), it is shown that the cross-covariance
rpφ is

rpφ = E{(p(t)− p̄)φ(t− L)}
=

[
|rh(L)|2 |rh(L−∆t)|2 . . . |rh(L− (M − 1)∆t)|2

]T
= rhϕ � r∗hϕ , (7.61)

where � denotes the Hadamard product (element wise multiplication). The
cross-covariance between the power and the regressor of observed powers can
thus be expressed in terms of the corresponding cross-covariance between the
complex time series h(t) and the regressor vector ϕ(t− L).

The elements of the covariance matrix Rφ are obtained from the co-
variance for the power observations, which according to equation (7.120) in
Appendix 7.A is

rpy(τ) = E{(py(t)− p̄y)(py(t− τ)− p̄y)} = |rh(τ) + re(τ)|2 . (7.62)

The covariance matrix for the power regressor Rφ can thus be expressed in
terms of the covariance matrix for the complex regressor,

Rφ =


σ2
py rpy(−∆t) rpy((1−M)∆t)

rpy(∆t) σ2
py

...
. . .

rpy((M − 1)∆t) σ2
py

 = Rϕ �R∗ϕ .

(7.63)
According to the results above we can express the optimal linear FIR-
predictor using the observed power in the regressor as

p̂(t+ L|t) = φT (t)ϑp + σ2
h , (7.64)

where
ϑp = R−1

φ rpφ = (Rϕ �R∗ϕ)−1(rhϕ � r∗hϕ) (7.65)

and the minimum MSE is obtained as for the complex predictor in (6.13)

σ2
εp = σ2

p − rHpφR
−1
φ rpφ

= σ4
h − (rhϕ � r∗hϕ)H(Rϕ �R∗ϕ)−1(rhϕ � r∗hϕ) . (7.66)

The NMSE for the predicted power is thus, for E{p2} = E{|h|4} = 2σ4
h since

h(t) ∈CN(0, σ2
h),

Vlinear =
σ2
εp

2σ4
h

=
1
2
−

(rhϕ � r∗hϕ)H(Rϕ �R∗ϕ)−1(rhϕ � r∗hϕ)

2σ4
h

. (7.67)
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The performance for the linear power predictor, using observed powers in
the regressor, can thus be expressed in terms of the covariance and cross-
covariance for the underlying complex signal.

7.5.2 Performance comparison

The results for the linear power predictor of Section 7.5.1 should be com-
pared to the results obtained using complex observations in the regres-
sor (7.19). When only one coefficient is used in the predictors, that is M = 1,
the two predictors actually are the same.

As the auto-covariance for the power is related to the auto-covariance
for the complex time series as rp(τ) = |rh(τ)|2, for the complex Gaussian
h(t), we see that the correlation decays faster with an increasing lag τ for
the power than for the complex time series. Consequently, it is harder to
predict the power than the complex time series.

Example 7.3 Power prediction of an AR2-process

In this example we will compare the performance of the linear power pre-
dictor (7.64), the quadratic power predictor (7.17) and the biased quadratic
power predictor (7.2), when the complex signal is generated by a second
order AR-process driven by white complex Gaussian noise. The delay
spacing ∆t is set to one. The AR2-process has two poles on the distance
ρ < 1 from the origin at the angles ±ϑ. The difference equation for the
signal is

h(t) = 2ρ cos ϑh(t−1)− ρ2h(t−2) +w(t)
y(t) = h(t) + e(t) (7.68)

where w(t) is the innovation process with variance σ2
w and the measure-

ment noise e(t) is white with variance σ2
e . Let the variance σ2

w, of the
driving noise be normalized as σ2

w = (1− ρ2)(1− 2ρ2 cos 2ϑ+ ρ4)/(1 + ρ2)
to make σ2

h = 1. The auto-covariance for the signal h(t) is then

rh(τ) =
(1− ρ2) cos ϑ sin(ϑ|τ |) + (1 + ρ2) cos(ϑτ) sin ϑ

(1 + ρ2) sinϑ
ρ|τ |. (7.69)

As the measurement noise is white, the cross-correlation rhϕ, between h(t)
and the regressor ϕ(t − L), with complex observations, only depends on
the auto-correlation for h(t),

rhϕ = [rh(L) rh(L+ 1)]T . (7.70)
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The covariance matrix for the regressor is

Rϕ = Rh + σ2
eI. (7.71)

Let ρ = 0.9748 and ϑ = 0.4417, with σ2
w = 0.0178 to make σ2

h = 1,
in this example. Then the auto-covariance (7.69) is close to J0(2πfDτ),
with fD = 0.1, for the first four lags. The time series h(t) is thus an
approximation of a Rayleigh fading tap with Jakes spectrum.

The predictors have only two coefficients (M = 2). In the absence of
measurement noise, σ2

e = 0, this is sufficient to obtain the best possible
prediction of the complex time series. We will in the following look at the
one-step predictor (L = 1).

In Figure 7.5 the NMSE for the three power predictors are shown as
a function of the SNR (σ2

e is varied). The NMSE for the predictions are
evaluated using the equations (7.23), (7.24) and (7.67). For low SNR
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Figure 7.5: A plot of the NMSE for one step power prediction of an AR2-
process as a function of SNR for the unbiased quadratic predictor (7.17),
(solid line), the biased quadratic predictor (7.2), (dashed) and the linear
power predictor (7.64), (dash-dotted).

the unbiased quadratic predictor and the linear power predictor have the
same performance with an NMSE equal to one half (the same as if only the
average is known). This is because both these predictors converge towards
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the average predictor p̂(t + 1|t) = σ2
h, when the SNR is decreased. In

contrast, the biased power predictor has an NMSE of one. For high SNR
we approach the noise free situation where the NMSE for the linear power
predictor (7.64) is 0.0695 according to (7.67). The unbiased quadratic
power predictor (7.17) and the biased quadratic power predictor (7.2) then
almost coincide, as the complex one-step prediction error will then only
consist of the small innovation w(t), with NMSEs of 0.0176 and 0.0178
respectively (evaluated using (7.24) and (7.23) with the complex variance
given by σ2

εc = σ2
w).

The improvement when using the unbiased quadratic predictor as com-
pared to the other two is clearly seen in Figure 7.6, where the relative gain
in dB is shown. The performance of the unbiased quadratic predictor is
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Figure 7.6: The improvement in NMSE, measured in dB, achieved by using
the unbiased quadratic predictor as compared to the biased (dashed) or the
linear power predictor (dash-dotted).

similar to that of the linear power predictor up to an SNR of 10dB, as both
predictors then mainly rely on using the average power as the prediction.
At an SNR of 40dB the difference is already close to 6dB. The opposite
holds when comparing with the biased quadratic predictor, which has a
performance that is 3dB worse than the unbiased quadratic predictor for
low SNR, where the biased predictor sets the predicted power to zero and
the unbiased quadratic predictor sets it to the average power. For high
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SNR they have almost equal performance, as then the complex prediction
error is low and the bias correspondingly small. At high SNR, it is al-
ways beneficial to predict the power based on the complex time series as
compared to using the power directly.

7.6 The Average Power

In Section 7.5 it was assumed that the average power is known. Generally
this is not the case and the average power has to be estimated. In the
following the statistical properties of a local time average of the power will
be examined for the Jakes channel (Section 7.6.1). The properties of this
estimate as a power predictor is investigated in Section 7.6.2. The analysis is
performed on a continuously observed power with no noise. If the channel is
sampled at a high rate, then the averaging of power samples will give similar
results to those obtained with the continuous average power estimator. The
effect of an additive noise is not treated here but it can be shown to cause
a bias in the average power estimate.

7.6.1 Estimation of the average power

The estimation of the average power is based on the observed power. These
are sampled and noisy observations. In the following we will see that power
estimation based on local averages over a few wavelengths of traveled dis-
tance are quite inaccurate even when the continuous power, without noise,
can be observed.

A local time-average of the power is obtained by summing the observa-
tions over a time interval T and divide by the length of the interval. If the
number of terms in the sum is large and the sampling rate high, the sum
can be approximated by the integral of the observations as

p̄T =
1
T

∫ T

0
|h(t)|2dt. (7.72)

The deviation from the the true average power is

εp̄T = p̄− p̄T (7.73)

The expectation of the estimation error is zero as the expectation of the local
average is the average power (E{p̄T } = p̄). The variance of the estimation
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error is
σ2
εp̄T

= E{ε2
p̄T } = E{p̄2

T } − p̄2, (7.74)

which depends on E{p̄2
T }. Apply (7.72) to form

E{p̄2
T } = E

{
1
T 2

∫∫ T

0
|h(t)|2|h(τ)|2dtdτ

}
=

1
T 2

∫∫ T

0
(σ4
h + |rh(t− τ)|2)dtdτ, (7.75)

where we have used (7.100) in Appendix 7.A to evaluate the expectation
of the product of the absolute squares of two stochastic variables with zero
mean and circular complex Gaussian distributions. As σ4

h = p̄2 does not
depend on t or τ , that term can be put outside the integral. The variance
of the error can thus be expressed as

E{ε2
p̄T
} =

1
T 2

∫∫ T

0
|rh(t− τ)|2dtdτ =

2
T 2

∫ T

0

∫ τ

0
|rh(t)|2dtdτ. (7.76)

The variance of the estimation error for the average power is thus given by
a double integral over the squared covariance of the complex signal. For
Jakes model the covariance is given by rh(τ) = J0(2πfDτ) for which (7.76)
is plotted in Figure 7.7. For a Jakes channel the estimation interval for
average power estimation has to be at least five wavelengths to obtain an
estimation error variance that is below 0.1. To obtain a variance below 0.01
the interval is must be above 80 wavelengths. It is thus not sufficient to use
short estimation intervals of a few wavelengths, to obtain good estimates of
the average power.

7.6.2 Using the average power as prediction

The local average (7.72) can be used as a power predictor. Define the running
power average as

p̄T (t) =
1
T

∫ t

t−T
p(τ)dτ. (7.77)

If this power estimate is used to predict the power a time L ahead, then the
prediction error is

εp̄T (t) = p(t)− p̄T (t− L), (7.78)

which has zero average. It is thus an unbiased predictor (in the case of no
noise). The MSE of this prediction, which is equal to the variance of the
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Figure 7.7: Variance of the estimation error for the local estimated average
power for a Jakes channel with p̄ = 1.

prediction error, is

E{ε2
p̄T } = E

{
(p(t)− p̄T (t))2

}
= E{p2(t)} − 2E{p(t)p̄T (t− L)}+ E{p̄2

T (t− L)}. (7.79)

This expression is treated term by term. As p(t) = |h(t)|2 and h(t) ∈
CN(0, σ2

h), we have that the first term is 2σ4
h = 2p̄2. The second term

E{p(t)p̄T (t− L)} =
1
T

∫ t−L

t−T−L
E{p(t)p(τ)}︸ ︷︷ ︸
p̄2+|rh(t−τ)|2

dτ = p̄2 +
1
T

∫ T+L

L
|rh(ρ)|2dρ,

(7.80)
where we have applied (7.101) and made the variable substitution ρ = t− τ
in the last integral. If L is large, then the corresponding correlation will
be small and thus the integral above will also be small. The last term
of (7.79) is given by (7.75). The total MSE of the predictor in (7.79) can
thus, using (7.79), (7.80) and (7.75), be expressed as

E{ε2
p̄T
} = 2p̄2 − 2p̄2 − 2

T

∫ T+L

L
|rh(τ)|2dτ + p̄2 +

1
T 2

∫∫ T

0
|rh(t− τ)|2dtdτ

= p̄2 +
1
T 2

∫∫ T

0
|rh(t− τ)|2dtdτ − 2

T

∫ T+L

L
|rh(τ)|2dτ. (7.81)
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As the second order moment of the power is E{p2(t)} = 2p̄2 the NMSE
for this power predictor is obtained by dividing (7.81) by 2p̄2. Figure 7.8
shows the NMSE for the Jakes model as a function of the length of the
window T and different prediction ranges L. Here both window length
and range are expressed as corresponding traveled distances as measured in
wavelengths. The results in Figure 7.8 are for an ideal case with continuous
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Figure 7.8: NMSE of the power prediction using the estimated local average
power as predictor.

observations and no noise. For longer estimation intervals T , the prediction
NMSE approaches that of the true average predictor, that is 0.5 independent
of prediction range. For a short prediction range L < 0.1, and a short
estimation interval T < 0.2, the NMSE of the local average as predictor
actually is better than 0.5. This is due to that the estimation interval is
sufficiently correlated to the power L steps ahead. The short estimation
interval makes the predictor similar to using the last observed power sample
as predictor.

Even under these favorable conditions an average over observations for a
quite long distances is needed to obtain good estimates of the average power.
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7.6.3 The last sample as predictor

When a estimation interval of just one sample is used in the average pre-
dictor, we obtain the last sample predictor. It relies on an assumption that
the power does not change that much over the prediction range, so the last
observations of the power is a good indication of what it will be later.

The prediction error for the last sample predictor, in a noiseless case, is

εp(t) = p(t)− p(t− L). (7.82)

It is a zero mean predictor and the variance is

σ2
εp = E{ε2

p(t)} = E{p2(t)− 2p(t)p(t− L) + p2(t− L)}
= 2σ4

h − 2(σ4
h + |rh(L)|2) + 2σ4

h = 2σ4
h − 2|rh(L)|2. (7.83)

The NMSE for the prediction error using the last sample as prediction, is
thus

V =
σ2
εp

σ2
p

= 1− |rh(L)|2
σ4
h

. (7.84)

The NMSE for the last sample predictor for a Jakes channel, is seen in
Figure 7.9. The prediction range has to be below 0.07 wavelengths to obtain
an NMSE under 0.1. For ranges beyond 0.18 wavelengths it is even worse
than just using the average power as prediction. The last sample predictor
is thus only an alternative for very short prediction ranges, even under such
favorable conditions as no noise.

7.6.4 Frequency selective channels

A frequency selective channel can be modeled as a time varying FIR-filter
where each tap can be seen as flat Rayleigh fading channel. The total power
is thus the sum of the power contribution from each tap,

p(t) =
M∑
k=1

pk(t) =
M∑
k=1

|hk(t)|2. (7.85)

In the following section we will examine two types of channels, one where all
the taps has equal average power and one where the taps are ordered after
an exponentially decaying average power, see Figure 7.10.

The total average power is just the sum of the average power for each
tap

p̄ = E{p(t)} =
M∑
k=1

E{|hk(t)|2}︸ ︷︷ ︸
p̄k=σ2

hk

=
M∑
k=1

p̄k, (7.86)
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Figure 7.9: The NMSE of the power prediction of a Jakes channel using the
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Figure 7.10: The power delay profile for two frequency selective channels:
One with ten on average equally strong taps and the other with exponential
decaying average powers of the taps.

whereas the second order moment of the power is expressed as

E{p2(t)} =
M∑
k=1

M∑
l=1

E{|hk(t)|2|hl(t)|2}︸ ︷︷ ︸
p̄kp̄l+|rhkhl |

2

= p̄2 +
M∑
k=1

M∑
l=1

|rhkhl |2, (7.87)
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where we have applied (7.101) and where rhkhl is the cross-covariance be-
tween tap k and l. The variance for the power is obtained as

E{(p(t)− p̄)2} = E{p2(t)} − p̄2 =
M∑
k=1

M∑
l=1

|rhkhl |2. (7.88)

It thus depends on the variance and cross-covariance of the complex taps.

Uncorrelated taps

In the following we will assume that the taps of the impulse response are
uncorrelated, that is

rhkhl = δklrhk = δklp̄k. (7.89)

This assumption simplifies the analysis significantly, but it is not valid when
pulse-shaping of the transmitted symbols are used. Then de-correlation of
the taps can be performed in a first step to obtain uncorrelated taps.

With uncorrelated taps the second order moment for the power is

E{p2(t)} = p̄2 +
M∑
k=1

p̄2
k, (7.90)

and the variance for the power is obtained as

E{(p(t)− p̄)2} = E{p2(t)} − p̄2 =
M∑
k=1

p̄2
k. (7.91)

In the two examples below we can see what the power contribution from a
number of uncorrelated taps means for the power prediction performance
when using the average power as predictor.

Prediction using the average power

The NMSE for using the true average power p̄, as a power predictor can in
the case of uncorrelated taps be obtained by using (7.86) in (7.90) and (7.91)
as

V =
E{(p(t)− p̄)2}

E{p2(t)} =
∑

k p̄
2
k

(
∑

k p̄k)
2 +

∑
k p̄

2
k

(7.92)
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Example 7.4 Taps with equal power

This channel has M uncorrelated taps, all of which has the same average
power, p̄k = 1. Insert this into (7.92) and the NMSE of the total average
as a predictor is obtained as

V =
∑

k 12

(
∑

k 1)2 +
∑

k 12
=

M

M2 +M
=

1
M + 1

. (7.93)

The NMSE decreases as the number of taps M increases. For M = 1 we
obtain V = 0.5, as expected.

Here one of the obvious advantages with broadband radio transmission
is seen. The higher the bandwidth, the larger the number of significant
taps. With a large number of contributing taps, the variation of the total
power will decrease as it is unlikely that all the taps fade simultaneously.
When the variation of the power level decreases, the average power will
work better as a predictor.

Example 7.5 Taps with exponentially decaying average power

In this channel the taps are uncorrelated and have an exponentially de-
caying average power p̄k = bak where 0 < a < 1 and 0 ≤ b. The total
average power is

p̄ =
M∑
k=1

p̄k =
M∑
k=1

bak = ba
1− aM
1− a . (7.94)

The sum of the squared powers is

M∑
k=1

p̄2
k =

M∑
k=1

b2a2k = b2a2 1− a2M

1− a2
. (7.95)

By using (7.94) and (7.95) the NMSE (7.92), for a channel with exponential
decaying PDP, can be expressed as

V =
b2a2 1−a2M

1−a2(
ba1−aM

1−a

)2
+ b2a2 1−a2M

1−a2

=
(1 + aM )(1− a)

2(1− aM+1)
. (7.96)
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Note that M = 1 result in V = 0.5. If we let the number of taps go to
infinity, then the exponential terms will tend to zero and (7.96) becomes

lim
M→∞

V =
1− a

2
. (7.97)

Thus, the NMSE for the average power predictor converges. If there is a
large number of strong taps, that is, a is close to one, then there is a lot
of diversity and the power of the channel will vary less. In that case the
average power is a good predictor. If a is close to zero, then only a few
taps will contribute significantly to the power. In that case the variation
of the power level will be significant and the average predictor will render
a poor performance with an NMSE close to 0.5.

In both these examples we see that if there are many taps that carry
power in the impulse response, then the relative variability of the total
power will be reduced. This improves the performance of the average power
as a predictor for frequency selective channels.

7.7 Results

7.7.1 Simulations

Just as in the evaluation of the performance for complex channel prediction
in Section 6.7.1 the Jakes model is studied. The expected performance for
power prediction of a flat Rayleigh fading channel with Jakes spectrum will
indicate the performance on the prediction of the absolute square of taps of
the measured channels.

Prediction performance with no noise reduction

The delay spacing that is optimal for complex prediction of a tap is also
optimal for prediction of the absolute square of a tap.2 When the optimal
delay spacing is obtained as in Figure 6.7, the optimal power prediction
NMSE for the predictor can be calculated for each SNR for the unbiased
quadratic predictor (7.16). In Figure 7.11 and 7.12 the optimal NMSE for
the quadratic unbiased predictor of the power using complex observations in

2This follows from equation (7.20) where the variance for the power prediction error is
expressed in terms of the variance of the complex prediction error. In the range 0 ≤ σ2

εc ≤ 1
this function obtain the minimum value for the smallest possible σ2

εc .
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the regressors and linear prediction using observed power in the regressor,
of a Rayleigh fading tap with Jakes spectrum contaminated by white noise
is depicted. As seen in Figure 7.12 the direct linear power predictor is out-
performed by the unbiased quadratic predictor, when the prediction range
is a quarter of a wavelength. This is expected as the correlation function for
the power decays much faster than for the complex tap.
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Figure 7.11: The optimal NMSE for power prediction one eighth of a wave-
length ahead, using the unbiased quadratic (left) and the linear power pre-
dictor (right). Performance improve as the number of coefficients increase.

The achievable performance depends on the number of coefficients M ,
that is the complexity. If there is a target NMSE, then the curves in Fig-
ures 7.11 and 7.12 can be used to find the necessary complexity at a given
SNR. For the prediction NMSE of 10−1 and 10−2, the Table 7.1 list how
much lower SNR that is tolerated when the number of coefficients are dou-
bled, e.g. for a prediction range of λ/4 a doubling of the number of coeffi-
cients from 64 to 128 will render an NMSE lower than 10−2 even if the SNR
decreases by 2.1 dB. These results are valid for taps described by the Jakes
model that are corrupted by white noise. No noise reduction is applied.

Prediction performance with noise reduction

Figure 7.13 shows how predictable the absolute square of a tap described by
the Jakes model is, with and without smoothed regressors. The OSR is 50
and the unbiased quadratic predictor (7.16) is based on an FIR predictor for
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Figure 7.12: The optimal NMSE for power prediction one quarter of a
wavelength ahead, using the unbiased quadratic (left) and the linear power
predictor (right).

Prediction range = 0.125λ
Doubling M 2-4 4-8 8-16 16-32 32-64 64-128
SNR gain [dB] 10−1 3.0 0.6 1.6 2.5 2.7 2.9
at NMSE 10−2 2.6 1.2 1.3 2.3 2.7

Prediction range = 0.25λ
Doubling M 2-4 4-8 8-16 16-32 32-64 64-128
SNR gain [dB] 10−1 4.4 2.2 1.4 2.0 2.5
at NMSE 10−2 2.5 1.7 2.1

Table 7.1: The improved tolerance towards noise (error on the channel
estimates) at a given NMSE when the prediction ranges are one eighth
and a quarter of a wavelength. The empty cells occur when the prescribed
NMSE is not achieved for an SNR below 50dB.

the complex taps, as described in Section 6.7.1. The complex predictor has
eight coefficients and a robust choice of delay spacing, given by Table 6.2.
The noise reduction is obtained using a bank of FIR smoother with 128 co-
efficients and the regressor is formed as in Section 6.2.3. By using smoothed
regressors the unbiased quadratic predictor, with eight coefficients, can at-
tain the same performance as the unbiased quadratic predictor using no
noise reduction at 7-9 dB lower SNR.
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Figure 7.13: The power prediction NMSE as a function of SNR for different
prediction ranges. The tap is described by the Jakes model. The unbiased
quadratic predictor is based on a complex FIR predictor with 8 coefficients
and the performance is shown for smoothed regressor (solid lines) and no
noise reduction (dashed line).
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Figure 7.14: The power prediction NMSE at 20 dB for a tap described by
the Jakes model as a function of prediction range. Solid and dashed lines
corresponds to smoothed and noisy regressors respectively.
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7.7.2 Power prediction on measured channels

To establish the performance of the predictors treated in this Chapter, the
predictors are tested on measured channel impulse responses, described in
Chapter 3. The quadratic power predictors are based on the complex tap
predictors described in Section 6.7.2. The noise reduction, delay spacing
and choice of measurements used for the performance evaluation are also
described in Section 6.7.2. Once the predictions of the absolute square of
the individual taps are obtained the prediction of the total power in the
channel is obtained as the sum of the predicted tap powers (7.34).

Quadratic power prediction

A power prediction can be formed from the prediction of the complex tap as
the absolute square of the complex prediction with an added compensation
for the bias, as seen in (7.16). When the model based predictors are used
the bias is not given by equation (7.4) or (7.5). The bias then has to be
estimated directly from the data in a separate step.

When the LS-estimated FIR predictor for the tap (6.48) is used the
unbiased power predictor can be obtained just using the estimated sample
covariances, R̂ϕk from (6.46) and r̂hkϕk from (6.47). The prediction of the
power of the tap is then obtained as in (7.16) by substituting the true co-
variances by the estimated. This is an unbiased power predictor under the
assumption of complex Gaussian taps. To further improve the performance,
smoothed taps are used as regressors.

For the model based predictors the AR models are estimated using least
squares and has a delay spacing of 0.1 wavelengths. The model estimation
is performed on smoothed taps, using a lag of 20 samples. The prediction is
performed on smoothed taps with lag 0. The power bias has to be estimated
in a separate step. From Section 7.6 we know that quite long estimation in-
tervals are needed to obtain reliable estimates for the average power. The
same should hold for estimation of the bias. The bias compensation thus
might actually reduce the prediction performance, especially when the vari-
ance for the complex prediction error is small.

Independent of the prediction range, 900 samples are used in the target
vector for the estimation of the predictor coefficients. The validation interval
was on the order of 400 down to 100 samples, depending on prediction range
and the Doppler frequency.
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Average and last sample prediction

The two simplest power predictors, the average power and the last sample
predictor, described in Section 7.6, are also included in the evaluation. The
average power is estimated using the same training interval as for the more
advanced predictors and it is evaluated on the same validation interval. The
performance of the average power as predictor says something about the
variability of the power. The better the average power is a as predictor the
less does the channel power vary.

7.7.3 Performance on the measured taps

The power prediction NMSE for all the taps in the measured channels are
evaluated using the unbiased quadratic power predictor based on the LS-
estimated FIR predictor for the complex taps, with eight coefficients and
smoothed regressors. The scatter plots in Figure 7.15 show the NMSE as a
function of the tap-to-estimation error SNR. The solid curve is the median
NMSE for the predicted taps within an SNR-bin of width 6 dB. The dashed
line is the corresponding theoretical NMSE for a tap described by the Jakes
model, using eight coefficients and the same noise reduction (the OSR is
50). The spread in performance increases with the prediction range. From
Figure 6.15 we know that taps with small Doppler spread show a higher
predictability. This is also the case for power prediction. The results
shown in Figure 7.15 for the prediction ranges 0.1 and 0.3 wavelength are
summarized for all the prediction ranges 0.1-0.5 wavelength in Figure 7.16.
The power prediction median NMSE that is achieved on the measured taps
is in the vicinity of that for a Jakes tap. For high SNR the obtained NMSE
is worse than the theoretical, for short prediction ranges. For longer ranges
the achieved SNR is actually lower than for a Jakes tap.

Another view of the same data is presented in Figure 7.17. The taps with
SNR in the range 32-38 dB have a median NMSE about 0.01 at prediction
range of 0.2 wavelengths. At the same range taps with SNR in the range
8-14 dB has a median NMSE close to ten times higher. At a given prediction
NMSE performance constraint, taps with high SNR can be predicted much
longer as compared to taps with low SNR. To obtain channel estimates with
as low estimation error as possible is thus crucial for the success of the
prediction scheme.
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Figure 7.15: Scatter plots of the tap power NMSE for all the measured taps
as a function of SNR for the unbiased quadratic power predictor based on
the complex tap FIR predictor with 8 coefficients described in Section 6.7.
The solid gray line is the median NMSE in a SNR bin of width 6 dB and
the dashed gray line is the theoretical power prediction NMSE for a tap
described by the Jakes model, for an OSR of 50. The prediction range is
0.1 wavelength (to the left) and 0.3 wavelengths (to the right).

7.7.4 Performance on the measured channels

The power predictions of the individual taps at each measurement location
are summed to obtain the power prediction of the corresponding channels.
In Figure 7.18 the power prediction using the absolute square of the model
based Kalman predictor for the complex taps, with added estimated bias
compensation is compared to the unbiased quadratic predictor based on
the FIR predictor for the complex taps. The median value of the power
prediction NMSE for the 41 measurement locations, at each range, is used
as performance measure. The performance of the power prediction based
on model based prediction is similar to that for the power predictor based
on FIR prediction of the complex channel. Even though the FIR predictor
deploys smoothed regressors and is designed to minimize the prediction error
at each range, it renders roughly the same performance as power prediction
based on a complex Kalman predictor with an AR8 model for the dynamics.
The predictor based on an AR4 model has a slightly worse performance,
whereas the AR12 model does not render a corresponding improvement.
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Figure 7.16: The power prediction NMSE as a function of channel esti-
mation error SNR for different prediction ranges. The unbiased quadratic
power predictor (solid lines) is based on an LS-estimated FIR predictor
using smoothed regressors, with 8 coefficients, for the complex tap. The
median value for the NMSE for taps with SNRs that fall within a bin of
width 6 dB is plotted. For comparison the corresponding theoretical curves
of Figure 7.13 for power prediction of a tap described by the Jakes model,
using the same noise reduction and delay spacing, is included (dashed lines).

This can be due to estimation errors on the AR12 model. For these short
estimation intervals, about 10 wavelengths long, larger models should thus
be avoided.

Which type of predictor that should be used in not an obvious choice
and complexity considerations have to be made. If only one prediction range
is of interest, then the predictor based on the FIR predictor is probably the
best choice. Whereas if all prediction ranges from 0.1 to 0.5 is of interest,
then the Kalman based predictor might be preferable as the whole range of
predictions are obtained at a very low extra computational cost.

The channel prediction NMSE for the unbiased quadratic predictor is
compared to the biased predictor (the sum of the absolute square of the taps
with no added bias compensation), the last sample predictor and the aver-
age power predictor in Figure 7.18. The unbiased power predictor provides
the best performance for all prediction ranges, measured over the valida-
tion set. As the range L increases, its NMSE slowly approaches that of the
average predictor from below. The biased power predictions and the last
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Figure 7.17: The median power prediction NMSE for an unbiased quadratic
power predictor based on an LS-estimated FIR predictor using smoothed
regressors, with 8 coefficients, for the complex tap. The five curves corre-
spond to different SNRs on the complex taps. The higher the SNR is, the
lower is the NMSE.

sample predictions become slightly worse than using the average power at
large prediction ranges. The average power actually provides a quite good
predictor with a median NMSE slightly below 0.1, as seen in Figure 7.19.
This is due to the long impulse responses where a lot of taps carry a signif-
icant amount of power, as discussed in Section 7.6. To obtain better power
prediction performance we have to rely on the quadratic power predictors
that obtain prediction NMSE under 0.01 for the total power up to a quarter
of a wavelength ahead.

The scatter plots in Figure 7.20 show the power prediction NMSE as a
function of channel SNR. The unbiased quadratic predictor based on the
FIR predictor with eight coefficients is used. The achieved power prediction
NMSE for the channel depends on the channel SNR. The SNR is not the
only factor influencing the prediction. The dynamics of the individual taps
and the variability of the total power also play a role. A measure for how
much the power varies is the performance of the estimated average as pre-
dictor. The scatter plot in Figure 7.21 show the NMSE for the sum of the
predicted powers from the unbiased quadratic predictors as a function of
the NMSE of the average power as predictor. For a short prediction range



7.7. Results 199

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10
−3

10
−2

10
−1

Median channel power prediction performance

Prediction range [λ]

N
M

S
E

Kalman AR4 
Kalman AR8 
Kalman AR12
FIR 8      

Figure 7.18: The median power prediction NMSE evaluated at 41 measure-
ment locations. The power prediction is obtained based on complex pre-
dictions of the taps using model based or FIR predictors (with smoothed
regressors).
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Figure 7.19: The average power prediction normalized MSE evaluated at
41 measurement locations.
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Figure 7.20: Scatter plots of the tap power NMSE for the unbiased predictor
as a function of the channel SNR. A higher channel SNR result in better
power prediction.
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Figure 7.21: Scatter plots of the tap power NMSE for the unbiased predictor
as a function of the NMSE for the average power as power predictor. The
performance of the average power as predictor is directly dependent on how
much the channel power actually varies. Dots below the line corresponds
to channels where the unbiased power predictor outperforms the average
power as predictor.
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(L=0.1λ), the NMSE for the sum of the predicted powers from the unbiased
quadratic predictors and the NMSE for the average power as predictor show
a slight dependence. For a range of half a wavelength the prediction NMSE
of the sum of the predicted powers from the quadratic unbiased predictors
approaches that of the average power as predictor. This is an expected re-
sult as the complex prediction will reduce the amplification at such a long
range. The bias compensation will thus play a larger role and when the am-
plification in the complex prediction tends to zero, the bias compensation
tend to the average power. There is a clear advantage in using the sum of
the predicted powers from the quadratic unbiased predictors as compared
to using the average power as predictor independent of the variability of the
power, especially for short prediction ranges.

7.8 Conclusion

• When a power signal originates from the squared magnitude of a com-
plex signal corrupted by an independent additive noise, it is beneficial
to use the observed complex signal to predict future values of the power
as compared to using the observed power.

• A quadratic predictor of the power using the observed complex taps
is designed.

– To directly use the absolute square of a linear prediction of the
complex time series renders a biased power prediction.

– Using the optimal linear predictor, this bias will equal the vari-
ance for the complex prediction error.

– The bias can be compensated for to form an unbiased quadratic
predictor.

– For a Rayleigh fading channel, that is complex Gaussian sam-
ples, the MMSE linear prediction of the complex time series also
renders the MMSE unbiased power prediction.

– When the complex valued time series is unpredictable the unbi-
ased quadratic predictor renders the average power whereas the
biased predictor predict zero power.

• The probability density functions for the power and the predicted
power are important in the design of link adaptation systems.
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– The joint pdf for the true and predicted power is given by the
bivariate gamma distribution.

– With known auto-covariances for the complex signal and the ad-
ditive noise the correlation between the true and predicted power
is known.

• Just as the prediction coefficients are tuned to achieve the best possible
prediction so should the delay spacing of the samples in the regressor
be tuned. The delay spacing strongly influences the achieved perfor-
mance.

• For a flat Rayleigh fading channel the correlation function for the
power is the absolute square of the correlation function of the complex
channel. The correlation function for the power thus falls of faster
than for the complex channel. Power prediction based on the observed
powers thus does not achieve as good performance as predictors based
on the complex channel.

• The power prediction performance for an unbiased quadratic predic-
tor on a tap described by the Jakes model can be greatly improved
using noise reduction. For an OSR of 50, a bank of Wiener smoothers
with 128 coefficients, the performance of a predictor using only eight
coefficients achieves the same performance as a predictor not applying
noise reduction at 7-9 dB lower channel-to-estimation error SNR.

• The performance of the unbiased quadratic power predictor is evalu-
ated on measured broadband channels.

– The median performance for power prediction of the measured
taps for the unbiased quadratic predictor using smoothed regres-
sors is similar to the performance on a tap described by the Jakes
model.

– The unbiased quadratic predictor has a better performance than
the biased quadratic predictor.

– The performance of the model based predictors, based on complex
prediction of the taps with a Kalman filter and AR models, is
similar to the one obtained using an unbiased quadratic predictor
based on FIR prediction of the complex channel.

– The performance is highly dependent on the channel-to-estimation
error SNR. To achieve reliable channel predictions the channel es-
timation error has to be low.
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7.A Covariances and Cross-covariances

As we usually work with the power of circular complex Gaussian random
variables, we will review some basic results concerning the correlation for
the power of such stochastic variables. For Gaussian random variables a, b, c
and d, the expectation of the product is

E{abcd} = E{ab}E{cd}+ E{ac}E{bd}+ E{ad}E{bc}+ E{a}E{b}E{c}E{d}.
(7.98)

In particulare, for Gaussian random variables with zero mean we have

E{abcd} = E{ab}E{cd} + E{ac}E{bd} + E{ad}E{bc}. (7.99)

This is a relation that we will use often in the following.
For two zero mean, circular complex Gaussian random variables, a ∈

CN(0, σ2
a) and b ∈ CN(0, σ2

b ) the corresponding powers are pa = |a|2 and
pb = |b|2. The correlation/covariance (they are the same as a and b have
zero means) between a and b is rab = E{ab∗}. The covariance between pa
and pb can be expressed using (7.99)

E{papb} = E{|a|2|b|2} = E{aa∗bb∗}
= E{aa∗}E{bb∗}+ E{ab}E{a∗b∗}+ E{ab∗}E{a∗b}, (7.100)

but as a and b are circular we have that E{ab} = E{a∗b∗} = 0 and we obtain

E{papb} = E{aa∗}E{bb∗}+ E{ab∗}E{a∗b} = σ2
aσ

2
b + |rab|2. (7.101)

As a special case of (7.101) we have the second order moment of the power
of a,

E{p2
a} = E{aa∗}E{aa∗}+ E{aa∗}E{a∗a} = 2σ4

a. (7.102)

The mean of the power is readily obtained as

p̄a = E{pa} = E{aa∗} = σ2
a, (7.103)

which is the variance of a. The variance of the power can then be obtained
using (7.102) and (7.103) as

E{(pa − p̄a)2} = E{p2
a} − p̄2

a = 2σ4
a − σ4

a = σ4
a, (7.104)

which is the square of the variance of a. The covariance between pa and pb
is obtained using (7.101) and (7.103)

E{(pa − p̄a)(pb − p̄b)} = E{papb} − p̄ap̄b = |rab|2. (7.105)

The covariance between the absolute squares of a and b is the absolute square
of the covariance between a and b.
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7.A.1 Power predicted with the unbiased quadratic predic-
tor

The expected value for the predicted power is σ2
h when using the unbiased

quadratic predictor (7.11). The variance of the predicted power is

σ2
p̂ = E{(p̂(t+ L|t)− σ2

h)2} = E{(|ĥ(t+ L|t)|2 − σ2
ĥ
)2}

= E{|ĥ(t + L|t)|4} − σ4
ĥ

= σ4
ĥ
, (7.106)

which follows from (7.104). From (6.17) we then obtain

σ2
p̂ = σ4

ĥ
= |θHRϕθ|2 (7.107)

and for the optimal predictor coefficients (7.15) θ = R−1
ϕ rhϕ, the vari-

ance (7.107) of the predicted power becomes

σ2
p̂ = |rHhϕR−1

ϕ rhϕ|2. (7.108)

As both the true power p(t) and the power prediction p̂(t) using the
unbiased predictor in (7.11), has the variance for the complex time series,
σ2
h, as their averages, the corresponding cross-covariance is obtained as

rpp̂ = E{(p(t)− σ2
h)(p̂(t|t− L)− σ2

h)}
= E{(|h(t)|2 − σ2

h)(|ĥ(t|t− L)|2 − σ2
ĥ
)} = |rhĥ|

2 = |θHrhϕ|2, (7.109)

where we have used (7.105) in the second last equality and (6.14) for rhĥ in
the last. With the optimal coefficients θ = R−1

ϕ rhϕ, this is

rpp̂ = |rHhϕR−1
ϕ rhϕ|2, (7.110)

which is the same as the variance of the power prediction (7.108).
The cross-correlation between power and the prediction error using the

unbiased predictor in (7.11), is

ρpεp = E{p(t)εp(t)} = E{p(t)(p(t)− p̂(t|t− L))}
= E{|h(t)|4} − E{|h(t)|2(|ĥ(t|t− L)|2 + σ2

h − σ2
ĥ
)}

= 2σ4
h − σ2

hσ
2
ĥ
− |rhĥ|

2 − σ2
h(σ2

h − σ2
ĥ
)

= σ4
h − |rhĥ|

2 = σ4
h − |θHrhϕ|2 (7.111)

where we have used (7.101) and (7.102) in the second last row and (6.14)
for rhĥ in the last equality. With the optimal coefficients θ = R−1

ϕ rhϕ, this
is

ρpεp = σ4
h − |rHhϕR−1

ϕ rhϕ|2. (7.112)
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The cross-correlation according to (7.112) will thus equal the minimal vari-
ance for the prediction error, according to (7.19).

The cross-correlation between predicted power and the prediction error
is

ρp̂εp = E{p̂(t|t− L)εp(t)}
= E{(p(t)− εp(t))εp(t)} = ρpεp − σ2

εp . (7.113)

Use the results from equation (7.111), for ρpεp, and (7.14), for the error
variance, to obtain

ρp̂εp = σ4
h − |θHrhϕ|2 −

(
σ4
h − 2|θHrhϕ|2 + |rHhϕR−1

ϕ rhϕ|2
)

= |θHrhϕ|2 − |rHhϕR−1
ϕ rhϕ|2. (7.114)

With θ = R−1
ϕ rhϕ we obtain ρp̂εp = 0. Hence, using the optimal coefficients

in the unbiased power prediction, there is no remaining correlation between
the predicted power and the power prediction error at time t.

7.A.2 Power predicted by linear regression in delayed power
observations

When using the predictor (7.53), the cross-covariance rpφ between the true
power and a regressor consisting of delayed observed power samples, is

[rpφ]i = E{(p(t)− p̄)φi(t− L)}
= E{(|h(t)|2 − σ2

h)(|h(t− τi)|2 + |e(t− τi)|2 + x∗(t− τi)e(t− τi)
+h(t− τi)e∗(t− τi)− σ2

h − σ2
e)} . (7.115)

Here, τi = L+ (1− i)∆t. This expression can be expanded as

[rpφ]i = E{|h(t)|2|h(t− τi)|2} − E{|h(t)|2}(σ2
h + σ2

e)
+E{|h(t)|2|e(t− τi)|2} − σ2

hE{|e(t− τi)|2}
+σ2

h(σ2
h + σ2

e)− σ2
hE{|h(t− τi)|2}

= (σ4
h + |rh(τi)|2)− σ2

h(σ2
h + σ2

e) + σ2
hσ

2
e

−σ2
hσ

2
e + σ2

h(σ2
h + σ2

e)− σ4
h = |rh(τi)|2, (7.116)

where we have made use of (7.101). The elements of the cross-covariance
vector rpφ (7.61) thus consist of the absolute square of auto-correlations
for h(t). The elements of the cross-covariance vector between the complex
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signal h(t), and the complex regressor ϕ(t−L), rhϕ (6.9) are [rhϕ]i = rh(τi).
The elements of rpφ can thus be expressed as

[rpφ]i = |[rhϕ]i|2, (7.117)

and the full vector is thus given by

rpφ = rhϕ � r∗hϕ, (7.118)

where � denotes the Hadamard product (element wise multiplication).

Observed power

The covariance function for the observations of the power is

rpy(τ) = E{(py(t)− p̄y)(py(t− τ)− p̄y)} = |ry(τ)|2, (7.119)

where we have used (7.105). When the signal h(t) and the noise e(t) are
uncorrelated ry(τ) = rh(τ) + re(τ) and the covariance function becomes

rpy(τ) = |ry(τ)|2 = |rh(τ) + re(τ)|2. (7.120)

7.B The MSE for the Biased and Unbiased Power

Predictor

When using the biased power predictor (7.2) the MSE for the power predic-
tion error in (7.3) becomes

E{|εpb(t)|2} = E{(|h(t)|2 − |ĥ(t|t− L)|2)2}
= E{|h(t)|4 − 2|h(t)|2|ĥ(t|t− L)|2 + |ĥ(t|t− L)|4}. (7.121)

Examine the three terms of (7.121) separately. As both h(t) and ĥ(t|t− L)
are distributed as circular complex Gaussian with zero mean, the first and
third terms are 2σ4

h and 2σ4
ĥ

respectively. For the same reason we can
use (7.101) to express the second term as

E{|h(t)|2|ĥ(t|t− L)|2} = σ2
hσ

2
ĥ

+ |rhĥ|
2. (7.122)

The MSE (7.121) for the biased power predictor is thus

E{|εpb |2} = 2σ4
h − 2(σ2

hσ
2
ĥ

+ |rhĥ|
2) + 2σ4

ĥ

= 2σ4
h − 2θHrhϕrHhϕθ − 2σ2

hθ
HRϕθ + 2|θHRϕθ|2, (7.123)

where we have used (6.17) for σ2
ĥ

and (6.14) for rhĥ. This is the criterion
that should be minimized to obtain the coefficient vector θ that provides
the best biased power predictor of the type (7.2).
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The variance

The MSE for the unbiased power predictor (7.11) is obtained from (7.123)
by subtracting the square of the bias,

σ2
εp = E{|εp|2} = E{(|x|2 − |ĥ|2)2} − |σ2

h − θHRϕθ|2

= σ4
h − 2θHrhϕrHhϕθ + |θHRϕθ|2 (7.124)

This is also the variance for the prediction error for both the unbiased and
biased power predictor.

7.B.1 Optimal coefficients for the biased predictor

Is it optimal to use the coefficient vector θc in (6.12) that minimizes the
prediction error (6.7) for the complex predictor, in the biased quadratic
power predictor (7.2)? To investigate if this is the case, we take the partial
derivative of the MSE, E{|εpb(t)|2} with respect to θ in (7.123) and set it
equal to zero.3

∂E{|εpb(t)|2}
∂θ

= −2θHrhϕrHhϕ − 2σ2
hθ

HRϕ + 4θHRϕθθ
HRϕ = 0 (7.125)

which results in the equation

θH(rhϕrHhϕ + σ2
hRϕ − 2Rϕθθ

HRϕ) = 0 . (7.126)

The optimal coefficients should fulfill this equation. It is obvious that
θ = R−1

ϕ rhϕ, which is the optimal solution with respect to the MSE cri-
terion (6.8) for complex prediction, is not a solution. However, a scaled
version of those coefficients

θpb =

√√√√σ2
h + rHhϕR−1

ϕ rhϕ
2rHhϕR−1

ϕ rhϕ
R−1
ϕ rhϕ =

√
σ2
h − σ2

εc/2
σ2
h − σ2

εc

θc (7.127)

will satisfy (7.126). Note that that the expression inside of the parenthesis
in (7.126) will not be zero with this choice of θpb . The vector of predictor co-
efficients θpb , is however orthogonal to the expression inside the parenthesis
and the scalar product is thus zero. Here, σ2

εc is the variance of the complex
prediction error using the optimal coefficients, see (6.13). As σ2

εc ≤ σ2
h, the

3How to find the derivative with respect to a complex vector is described in
e.g.Appendix B of [63].
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scaling factor is larger or equal to one. This scaling thus amplifies the power
prediction obtained with the optimal coefficients for the complex prediction,

p̂(t+ L|t) =
σ2
h − σ2

εc/2
σ2
h − σ2

εc

θHc ϕ(t)ϕ(t)Hθc

=
σ2
h − σ2

εc/2
σ2
h − σ2

εc

|ĥ(t + L|t)|2 . (7.128)

This solution is of minor interest as the predictor will still be biased, al-
though the use of θpb reduces the bias by half, as compared to using θc.

If the optimal coefficients, θpb , given by (7.127) for the biased power
predictor are used in (7.123), then the MSE is obtained as

E{|εpb(t)|2} =
3
2
σ4
h − σ2

hr
H
hϕR−1

ϕ rhϕ −
1
2
|rHhϕR−1

ϕ rhϕ|2

= σ2
εc

(
2σ2

h − σ2
εc/2

)
, (7.129)

which is σ4
εc/2 larger than the MSE (7.20) for the unbiased quadratic pre-

dictor (7.17).

7.C Derivation of the Distribution

7.C.1 The jpdf for the power

To obtain the jpdf for the true power and the power, as predicted by the
unbiased quadratic predictor, we will use the bivariate χ2 distribution.

Assume that we have two correlated CN distributed stochastic variables
x and ĥ, both zero mean and with variances σ2

h and σ2
ĥ

and correlation rhĥ.

As both |h|2 and |ĥ|2 are χ2(2) distributed, their joint probability density
is a bivariate χ2 distribution. The jpdf for the magnitudes, |h| and |ĥ|, is a
bivariate Rayleigh distribution [64], [7]

f|h||ĥ|(|h|, |ĥ|) =
4|h||ĥ|

σ2
hσ

2
ĥ
− |rhĥ|2

exp

(
−

σ2
hσ

2
ĥ

σ2
hσ

2
ĥ
− |rhĥ|2

(
|h|2
σ2
h

+
|ĥ|2
σ2
ĥ

))

× I0

(
2|rhĥ||h||ĥ|
σ2
hσ

2
ĥ
− |rhĥ|2

)
. (7.130)

To obtain the corresponding bivariate χ2 distribution we make a transfor-
mation to the powers, |h|2 and |ĥ|2. The jpdf for the transformed random
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variables is obtained using the Jacobian, as described in [62],

J(|h|, |ĥ|) =

∣∣∣∣∣∣∣∣
∂|h|2
∂|h|

∂|h|2
∂|ĥ|

∂|ĥ|2
∂|h|

∂|ĥ|2
∂|ĥ|

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 2|h| 0

0 2|ĥ|

∣∣∣∣ . (7.131)

The determinant of the Jacobian is

|J(|h|, |ĥ|)| = 4|h||ĥ|. (7.132)

The bivariate χ2 distribution for |h|2 and |ĥ|2 is thus obtained as

f|h|2|ĥ|2(|h|2, |ĥ|2) =
f|h||ĥ|(

√
|h|2,

√
|ĥ|2)

|J(|h|, |ĥ|)|

=
1

σ2
hσ

2
ĥ
−|rhĥ|2

exp

(
−

σ2
hσ

2
ĥ

σ2
hσ

2
ĥ
−|rhĥ|2

(
|h|2
σ2
h

+
|ĥ|2
σ2
ĥ

))
I0

(
2|rhĥ||h||ĥ|
σ2
hσ

2
ĥ
−|rhĥ|2

)
.

(7.133)

7.C.2 The conditional pdf for the error

The cpdf for the prediction error and the the optimal quadratic power pre-
diction is given by (7.47)

fεp(εp|p̂) =
1
σ2
εc

exp
(
−
εp + 2p̂− σ2

εc

σ2
εc

)
I0

(
2
σ2
εc

√
(p̂ − σ2

εc)(p̂ + εp)
)

×U(p̂ + εp)U(p̂ − σ2
εc). (7.134)

In this section the mean, variance and the asymptotic behavior of the error,
as a function of the predicted power, are derived.

The power prediction error, when using θ = θp from (7.15) in the pre-
dictor (7.10), can by (6.7) and (7.17) be expressed in terms of the complex
prediction ĥ and its prediction error variance σ2

εc as (7.49)

εp = p− p̂ = |h|2 − |ĥ|2 − σ2
εc = |ĥ+ εc(t)|2 − |ĥ|2 − σ2

εc

= |εc|2 + ĥε∗c + ĥ∗εc − σ2
εc . (7.135)

Here, ĥ and εc are uncorrelated, as the optimal prediction coefficients are
used.
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Mean

The mean of εp is

E{εp} = E
{
|εc|2 + ĥε∗c + ĥ∗εc − σ2

εc

}
= σ2

εc + 0 + 0− σ2
εc = 0, (7.136)

where we have used that the complex prediction and the complex predic-
tion error are uncorrelated when the MSE-optimal prediction coefficients are
used. The power prediction error for the unbiased power predictor will thus
have zero mean for all predicted powers.

Variance

To obtain the variance for the power prediction error, conditioned on the
predicted power, we shall study the mean and variance of a special case of the
general (real-valued) quadratic form Z = A|X|2 +B|Y |2 +CXY ∗+C∗X∗Y
with A = 0, B = 1 and C = 1,

Z = |Y |2 +XY ∗ +X∗Y = Y 2
r + Y 2

i + 2XrYr + 2XiYi , (7.137)

where the sub-indices r and i denotes real and imaginary part respectively.
Here, Y is a CN(0, σ2

Y ) distributed stochastic variable while X is below
considered as a free deterministic variable which is uncorrelated with Y .
Express X in polar coordinates, X = r cosϕ+ r sinϕ, as we are interested
in how Z depends on r. We thus have

Z = Y 2
r + Y 2

i + 2Yrr cosϕ+ 2Yir sinϕ . (7.138)

The mean of Z defined by (7.137) with respect to Y is

Z̄ = E{Z} = E{|Y |2 +XY ∗ +X∗Y } = σ2
Y . (7.139)

The variance of Z is

σ2
Z = E{Z2} − Z̄2 = E

{
(Y 2
r + Y 2

i + 2Yrr cosϕ+ 2Yir sinϕ)2
}
− Z̄2

= E{Y 4
r }+ E{Y 4

i }+ 2E{Y 2
r }E{Y 2

i }
+4r2

(
E{Y 2

r } cos2ϕ+ E{Y 2
i } sin2ϕ

)
− Z̄2

=
3
4
σ4
Y +

3
4
σ4
Y + 2

σ2
Y

2
σ2
Y

2
+ 4r2σ

2
Y

2
− σ4

Y

= σ2
Y (σ2

Y + 2r2) , (7.140)

where we have used that for zero mean real-valued Gaussian variables

E{Y 2
r } = E{Y 2

i } =
E{Y 2}

2
=
σ2
Y

2
(7.141)
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E{Y 4
r } = E{Y 4

i } = 3
(

E{Y 2}
2

)2

=
3
4
σ4
Y . (7.142)

The power prediction error (7.135) using the unbiased quadratic predic-
tor can be expressed in the form (7.137), with Y = εc, X = ĥ and with the
bias compensation σ2

εc , subtracted. The variance for the power prediction
error is given by (7.140) with σ2

Y = σ2
εc and r = |ĥ|,

σ2
εp = σ2

εc(σ
2
εc + 2|ĥ|2). (7.143)

The predicted power is p̂ = |ĥ|2 + σ2
εc = r2 + σ2

εc, so the variance for the
power prediction error conditioned on the predicted power is

σ2
εp = σ2

εc(σ
2
εc + 2(p̂ − σ2

εc)) = σ2
εc(2p̂ − σ

2
εc), (7.144)

which is (7.48).

Asymptotic behavior

When p̂ = σ2
εc (which is the minimum), the pdf in equation (7.134) becomes

fεpp̂(εp|p̂) =
1
σ2
εc

exp
(
−
εp + σ2

εc

σ2
εc

)
U(εp + σ2

εc) , (7.145)

which is the pdf for a χ2(2) variable with mean σ2
εc , that is, the pdf is shifted

to the left by σ2
εc . This will be the the distribution of the power prediction

error when predicting into deep fading dips.
When p̂→∞, we expect the distribution to become more Gaussian, as

the two Gaussian terms ĥε∗c + ĥ∗εc in the sum in equation (7.135) will, for a
specified and increasing |ĥ|, dominate over the first term. (Note that sums
of Gaussian variables are also Gaussian.)

To obtain the asymptotic behavior for the pdf when p̂→∞, the following
two expressions are needed,√

1 +
1
z

= 1 +
1
2z
− 1

8z2
+O

(
1
z3

)
, (7.146)

I0(z) =
ez√
2πz

[
1 +O

(
1
z

)]
(7.147)
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where z →∞. If we use the approximation (7.146) on the argument in the
modified Bessel function in (7.134) we obtain

2
σ2
εc

√
(p̂− σ2

εc)(p̂ + εp) =
2p̂
σ2
εc

√
1+
(
εp − σ2

εc
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εpσ2

εc

p̂2

)
=

2p̂
σ2
εc

(
1 +

1
2

(
εp − σ2

εc

p̂
−
εpσ

2
εc

p̂2

)
− 1

8

(
εp − σ2

εc

p̂
−
εpσ

2
εc

p̂2

)2

+O

(
ε3
p

p̂3

))

=
2p̂
σ2
εc

(
1 +

εp − σ2
εc

2p̂
−
εpσ

2
εc

2p̂2
−

(εp − σ2
εc)

2

8p̂2
+O

(
ε3
p

p̂3

))

=
εp + 2p̂−σ2

εc

σ2
εc

−
(εp + σ2

εc)
2

4p̂σ2
εc

+O

(
ε3
p

p̂2

)
(7.148)

This approximation of the argument is inserted into the modified Bessel
function and then the approximation (7.147) is applied,

I0

(
2
σ2
εc

√
(p̂− σ2

εc)(p̂ + εp)
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= I0
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=
exp

(
εp+2p̂−σ2

εc
σ2
εc

− (εp+σ2
εc

)2

4p̂σ2
εc

+O
(
ε3p
p̂2

))
√

2π
(
εp+2p̂−σ2

εc
σ2
εc

− (εp+σ2
εc

)2

4p̂σ2
εc

+O
(
ε3p
p̂2

))(1 +O
(
p̂−1
))

=
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)
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−

ε2
p

4σ2
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)

×
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(
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εc

4p̂σ2
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+O
(
ε3p
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√(

1 + εp−σ2
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(
ε2p
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(
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(7.149)

The last exponential and square root can be approximated further using

1√
1 + 1

z

= 1− 1
2z

+O

(
1
z2

)
, (7.150)

e1/z = 1 +
1
z

+O

(
1
z2

)
(7.151)

where z →∞. The modified Bessel function in (7.134) can then be approx-
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imated as
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(7.152)

Insert this into equation (7.134) and the pdf for the power prediction error
when p̂→∞ is obtained as

fεp̂(εp|p̂) =
1√

4πσ2
εc p̂

exp

(
−

ε2
p

4σ2
εc p̂

)(
1 +O

(
εp
p̂

)
+O

(
ε3
p

p̂2

))
(7.153)

which is a Gaussian distribution. The variance is 2σ2
εc p̂ which is in line with

the results from (7.144) where the σ4
εc term is negligible compared to 2σ2

εc p̂
when p̂→∞.

7.C.3 Derivation of the pdf for the prediction error

To obtain an expression for the pdf of (7.49) we shall again take a look at
the quadratic form

Z = |Y |2 +XY ∗ +X∗Y , (7.154)

where X and Y are uncorrelated zero mean CN distributed stochastic vari-
ables. The characteristic function of Z is given in [65] as

Φz(ω) =
1

(1 + ωρ+)(1− ωρ−)
=

1
ρ+ + ρ−

(
1

1
ρ+

+ ω
+

1
1
ρ−
− ω

)
,

(7.155)
where the damping coefficients ρ+ and ρ− are positive. The relationship
between ρ+, ρ− and the variances will be given further on. The pdf is the
inverse Fourier transform of the characteristic function,

fz(z) = F−1Φz(ω) =

{
1

ρ++ρ−
e−z/ρ+ if z ≥ 0

1
ρ++ρ−

ez/ρ− otherwise ,
(7.156)
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where the part for positive and negative z relates to the first and second
term in the parenthesis of equation (7.156), respectively. The stochastic
variable Z has thus a skew Laplacian distribution. To obtain expressions
for ρ+ and ρ− we look at the mean and variance of Z. These moments can
be calculated from the pdf in equation (7.156) as

Z̄ =
∫ ∞
−∞

zfz(z)dz = ρ+ − ρ− (7.157)

σ2
Z =

∫ ∞
−∞

z2fz(z)dz − Z̄2 = ρ2
+ + ρ2

− . (7.158)

The mean and variance can also be obtained from equation (7.154) as

Z̄ = E{|Y |2 +XY ∗ +X∗Y } = σ2
Y (7.159)

σ2
Z = E{||Y |2 +XY ∗ +X∗Y |2} − Z̄2 = σ4

Y + 2σ2
Xσ

2
Y , (7.160)

since X and Y are uncorrelated. A system of equations is obtained from
(7.157) to (7.160), where we can solve for ρ+ and ρ−,

ρ+ =
1
2

(√
σ2
Y (4σ2

X + σ2
Y ) + σ2

Y

)
(7.161)

ρ− =
1
2

(√
σ2
Y (4σ2

X + σ2
Y )− σ2

Y

)
. (7.162)

The pdf for Z can thus be expressed in terms of the variances for X and Y
by insertion of (7.161) and (7.162) into (7.156).

The pdf for the prediction error

The prediction error of the power is obtained as (7.49) or (7.135),

εp = |εc|2 + ĥε∗c + ĥ∗εc − σ2
εc . (7.163)

This expression is similar to (7.154) but there is an extra constant term
in (7.163) which has no counterpart in (7.154). This additive constant will
cause a shift of the whole pdf in (7.156) by a factor of σ2

εc . The pdf for the
power prediction error using optimal linear prediction is thus obtained as

fεp(εp) =

{
1

ρ++ρ−
e−(εp+σ2

εc
)/ρ+ for εp ≥ −σ2

εc
1

ρ++ρ−
e(εp+σ2

εc
)/ρ− otherwise

(7.164)
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with ρ± obtained as in (7.161) and (7.162) with σ2
Y = σ2

εc and σ2
X = σ2

ĥ
,

ρ± =
1
2

(√
σ2
εc(4σ

2
ĥ

+ σ2
εc)± σ

2
εc

)
=

1
2

(√
σ2
εc(4σ

2
h − 3σ2

εc)± σ
2
εc

)
(7.165)

=
1
2

(√
(σ2
h−rHhϕR−1

ϕ rhϕ)(σ2
h+3rHhϕR−1

ϕ rhϕ)± (σ2
h−rHhϕR−1

ϕ rhϕ)
)
,

(7.166)

where we in the second equality made use of (6.18) for σ2
ĥ

and in the last
equality the expression (6.13) for σ2

εc was used.
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Chapter 8

Application to Link
Adaptation

8.1 Introduction

Adaptive modulation, or link adaptation, is a powerful technique for im-
proving the spectral efficiency in wireless transmission over fading channels.
The modulation parameters, such as signal constellation size, transmitted
power level and data rate are here adjusted according to the channel condi-
tions. The adaptation can also take requirements of different traffic classes
and services such as required bit error rates, into account. In the case of
fast link adaptation considered here, we strive to adapt to the small scale
fading. The receiver estimates the received power and sends feedback infor-
mation via a return channel to the transmitter, which adjusts its modulation
parameters. Due to the unavoidable delays involved in power estimation,
feedback transmission and modulation adjustment, the adaptation needs to
be based on predicted estimates of the power of the fading communication
channel.

The design of adaptive modulation systems is extensively studied in the
literature (e.g. see [8], [4], [7]). However, a common assumption is perfect
knowledge of the channel conditions at the transmitter as well as error free
channel estimates at the receiver. In real systems, these assumptions are
not valid. This leads to performance degradation such as decrease in the
throughput and increase in the delay as well as failure in providing the
required service such as the expected bit error rate. Therefore, a solution
based on a more realistic assumption is of great importance and interest.

In this chapter, we intend to design an optimum adaptive modulation

217
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system for a given channel prediction error variance with a corresponding
statistical model, which maximizes the spectral efficiency while satisfying
a certain BER requirement. The proposed system utilizes the unbiased
quadratic predictor (7.16) derived in Chapter 7 to predict the channel quality
at the receiver. The statistical model developed in Chapter 7 reasonably well
describes the properties of prediction errors and gives a good estimate of the
mean, the variance and the probability density function of the errors. This
statistical model is taken into account for design and performance analysis
of the adaptive modulation schemes.

This chapter is organized as follows. Section 8.2 describes the system
model and the notations which are used throughout this study. The channel
prediction is explained in Section 8.3. The BER formula as a function of the
predicted instantaneous SNR is evaluated in Section 8.4 and the optimal
rate and power adaptation are derived in Section 8.5. Analytical results
are presented in Section 8.6 and finally, some conclusions are drawn in Sec-
tion 8.7.

8.2 System Model

In the adaptive modulation, M-QAM modulation with different constellation
sizes are provided at the transmitter. For each transmission of a block
of data, the modulation scheme and transmit power are assumed to be
selected, to maximize the spectral efficiency under the instantaneous BER
and the average power constraints, based on the instantaneous predicted
SNR. The channel is modeled as a flat Rayleigh fading channel. At the
receiver, demodulation is performed using estimates of the channel, which
are here assumed to be error free.

The discrete-time model of the system is depicted in Figure 8.1. All
the signals are sampled at the symbol rate, where the index n represents
the signal sample at time nts where ts is the symbol period. The channel
is estimated at the symbol rate. The complex valued channel gain h(n)
has a uniformly distributed phase within [0, 2π) and Rayleigh distributed
amplitude with pdf given by

f|h|(|h(n)|) =
|h(n)|
σ2
h/2

exp
(
−|h(n)|2

σ2
h

)
(8.1)

where σ2
h is the average power of the fading process. The noise v(n) is a

sample of the complex AWGN with zero mean and time-invariant variance
σ2
v . Channel estimation at the receiver renders y(n), a noisy estimate of h(n),



8.2. System Model 219

h(n)- -

-

Demodulation

Noise
reduction

Channel
estimation

Channel
prediction

6

6

Modulation

Adaptive rate
and power

q−L

-

6

6

66 6
- -Σ

h̃(n|n)

y(n)

b̂(n)b(n) s(n) u(n)

v(n)

γ̂(n+ L|n)

S(γ̂(n|n−L))M(γ̂(n|n−L))

ϕ(n)

Figure 8.1: Discrete model of the system. M is the constellation size and
S is the transmit power.

which is used by an FIR predictor at the receiver to predict the instantaneous
received SNR denoted by γ̂(n|n−L). The noise reduction step is optional but
helps to increase the prediction performance. An error free feed-back channel
is assumed. Furthermore, the feed-back transmission delay is presumed to
be taken up by the predictor, since the prediction is performed beyond the
corresponding delay.

Based on γ̂(n|n − L), the modulation scheme with constellation size
M(γ̂(n|n− L)) (out of N constellations available at the transmitter) which
transmits k(γ̂(n|n−L)) = log2 M(γ̂(n|n−L)) bits per symbol, and the trans-
mit power S(γ̂(n|n−L)) are selected. A number of blocks of k(γ̂(n|n−L))
data bits denoted by b(n), are Gray encoded and mapped to s(n) which is a
symbol in the signal constellation and is transmitted over the flat Rayleigh
fading channel. The received sample, u(n), is used to estimate the channel
gain h̃(n|n) which in turn is used to demodulate u(n) to detect the trans-
mitted bits denoted by b̂(n). Since the estimation error is believed to have
a minor effect on the performance compared to the prediction error, perfect
channel estimation is assumed in the demodulation, i.e. h̃(n|n) = h(n). The
SNR prediction γ̂(n|n−L) is however assumed to be based on noisy channel
estimates and will have a prediction error, with variance σ2

ε .
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In this study, the following notations similar to those of [8] are used. Let
S̄ denote the average transmit signal power and

γ̄ =
S̄

σ2
v

σ2
h (8.2)

denote the average received SNR. For a constant transmit power S̄, the
instantaneous received SNR is

γ(n) = γ̄
p(n)
σ2
h

(8.3)

where p(n) = |h(n)|2 is the instantaneous channel power gain. Accordingly,
the instantaneous predicted received SNR is

γ̂(n|n− L) = γ̄
p̂(n|n− L)

σ2
h

(8.4)

where p̂(n|n− L) is the predicted instantaneous channel power gain.
For a varying transmit power S(γ̂(n|n−L)), the instantaneous received

SNR is given by

γ(n, S) =
S(γ̂(n|n− L))

σ2
v

p(n) = γ(n)
S(γ̂(n|n− L))

S̄
. (8.5)

Also, the rate region boundaries denoted by {γ̂i}N−1
i=0 and γ̂(n) = ∞ are

defined as the ranges of γ̂(n) values over which the different constellations
are used by the transmitter.

When the predicted instantaneous SNR belongs to a given rate region,
i.e. γ̂(n) ∈ [γ̂i, γ̂i+1), the corresponding constellation of size M(γ̂(n)) =
Mi with k(γ̂(n)) = ki bits per symbol is transmitted. Finally, there is no
transmission if γ̂(n) < γ̂0 meaning that γ̂0 is the cutoff SNR.

8.3 Prediction and Distributions for SNR

The channel gain in a Rayleigh fading mobile radio channel takes values
from a complex time series which can be modeled as a correlated complex
Gaussian stochastic process. The absolute square, i.e. the power, of the
time series is predicted based on linear regression of the observations of the
complex time series. The unbiased quadratic predictor that is optimal in
the Mean Square Error (MSE) sense is derived in Chapter 7 where it is
shown that the same prediction coefficients that are optimal also for the
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linear prediction of the complex tap, are optimal for the quadratic unbiased
predictor.

The complex channel gain is observed in noise as

y(n) = h(n) + e(n) (8.6)

where e(n) is assumed to be a white, zero mean, complex Gaussian random
variable which is independent from h(n).

SNR prediction

From the past and present observations, the power of the signal at time n+L,
i.e. p(n+L) = |h(n+L)|2, is predicted by an unbiased FIR predictor. In the
vector formulation, the unbiased predicted power based on the past noisy
observations is given by (7.10) derived in Section 7.2.2

p̂(n+ L|n) = θHϕ(n)ϕH(n)θ + σ2
h − θHRϕθ (8.7)

where the regressor ϕ(n) is obtained as in (6.5) or using smoothed obser-
vations as in (6.31). The predicted SNR is obtained by insertion of (8.7)
into (8.4).

Distribution functions

In order to find the optimum adaptive modulation system which maximizes
the spectral efficiency under a certain BER constraint the pdf of the in-
stantaneous SNR is required. Since h(n) is a complex Gaussian random
variable, the true power p(n) = |h(n)|2 is χ2(2) distributed, whereas the
predicted power has a shifted χ2(2) distributed due to the bias compensa-
tion. In Appendix 8.A it is shown that the pdf of γ conditioned on γ̂ is given
by (8.41)

fγ(γ|γ̂) =
U(γ)U(γ̂ − γ̄νhεc)

γ̄νhεc
exp(−γ + γ̂ − γ̄νhεc

γ̄νhεc
)I0

(
2

γ̄νhεc

√
γ(γ̂ − γ̄νhεc)

)
,

(8.8)
where νhεc is the ratio between the variance for the complex channel predic-
tion error and the variance for the channel, defined as

νhεc =
σ2
εc

σ2
h

. (8.9)

The pdf of γ̂ is given by (8.39) in Appendix 8.A as

fγ̂(γ̂) =
U(γ̂ − γ̄νhεc)
γ̄(1− νhεc)

exp
(
− γ̂ − γ̄νhεc
γ̄(1− νhεc)

)
. (8.10)
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In (8.8) and (8.10) the index n is dropped expressions since h(n) and ĥ(n)
are both assumed to be stationary random processes. The power prediction
has a lower limit given by the variance of the complex channel prediction
error. The predicted SNR will thus have a lower limit γ̂ ≥ γ̄νhεc.

8.4 M-QAM BER Performance

The transmitter adjusts the constellation size and the transmit power based
on the predicted SNR γ̂. Evaluation of the optimal power and constellation
size (or rate) which maximize the spectral efficiency and satisfy the BER
requirement, requires an analytical expression for the BER formula as a
function of γ̂. Assuming a square M-QAM constellation with Gray encoded
bits, constellation size M(γ̂), and transmit power S(γ̂), the instantaneous
BER as a function of γ and γ̂ on an AWGN channel, is approximated by [65]

BER(γ, γ̂) ≈ 2
log2M(γ̂)

(
1− 1√

M(γ̂)

)
erfc

√1.5
γ S(γ̂)

S̄

M(γ̂)− 1

 (8.11)

which is tight for high SNRs. In [8], it is shown that (8.11) can be further
approximated as

BER(γ, γ̂) ≈ 0.2 exp
(
−1.6γ

M(γ̂)− 1
S(γ̂)
S̄

)
(8.12)

which is tight within 1 dB for M(γ̂) ≥ 4 and BER≤ 10−3. By averaging
(8.12) over the whole range of the instantaneous true SNR γ, the instan-
taneous BER as a function of the instantaneous predicted SNR is obtained
as

BER(γ̂) =
∫ ∞

0
BER(γ, γ̂)fγ(γ|γ̂)dγ (8.13)

≈ a(γ̂)
b(γ̂)

exp

(
c(γ̂)2

4b(γ̂)

)
, γ̂ ≥ γ̄νhεc (8.14)

where

a(γ̂) =
0.2
γ̄νhεc

exp
(
− γ̂ − γ̄νhεc

γ̄νhεc

)
, (8.15)

b(γ̂) =
1

γ̄νhεc
+

1.6
M(γ̂)− 1

S(γ̂)
S̄

, (8.16)
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and
c(γ̂) =

2
γ̄νhεc

√
γ̂ − γ̄νhεc . (8.17)

In Figure 8.2, the instantaneous BER is illustrated for the constant transmit
power S(γ̂) = S̄ and different constellation sizes where both (8.11) and (8.12)
are used in (8.14). It is shown that the results based on the approximation
given by (8.12) is tight enough.
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Figure 8.2: BER versus instantaneous predicted SNR of M-QAM schemes
for γ̄ = 30 dB and σ2

εp = 0.001 (that is a prediction NMSE of 0.0005). The
solid lines and dashed lines correspond to (8.14) based on (8.11) and (8.12),
respectively.

8.5 Optimal Rate and Power Adaptation

The spectral efficiency of a modulation scheme is given by the average data
rate R per unit bandwidth B, (R/B). When a modulation with constellation
size M(γ̂) is chosen, the instantaneous data rate is k(γ̂)/ts (bps), where k
is the number of data bits per symbol. Assuming the Nyquist data pulses
(B = 1/ts), the spectral efficiency is given by

ηB =
R

B
=

N−1∑
i=0

ki

∫ γ̂i+1

γ̂i

fγ̂(γ̂)dγ̂ bps/Hz (8.18)
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We would like to maximize the spectral efficiency subject to the average
transmit power constraint ∫ ∞

0
S(γ̂)fγ̂(γ̂)dγ̂ ≤ S̄ (8.19)

and the instantaneous BER constraint given by

BER(γ̂) = Pb. (8.20)

Under a BER constraint, S(γ̂) can be evaluated in terms of γ̂ and M(γ̂) as
follows: Let us define

x =
1

γ̄νhεcb(γ̂)
, 0 ≤ x ≤ 1 (8.21)

and

y =
γ̂

γ̄νhεc
, y ≥ 1. (8.22)

By using (8.32) and (8.22) in (8.14), equation (8.20) can be expressed as

0.2xe(1−y)(1−x) = Pb. (8.23)

Taking the natural logarithm of (8.23) and then using the Taylor approxi-
mation lnx ≈ x− 1 about x = 1, we obtain

x ≈ 1 +
1
y

ln
(
Pb
0.2

)
(8.24)

and consequently

S(γ̂) ≈ g(γ̂,M(γ̂)) (8.25)

=
− (M(γ̂)− 1)

1.6

S̄ ln
(
Pb
0.2

)
γ̂ + γ̄νhεc ln

(
Pb
0.2

)U (γ̂ − γ̄νhεc) . (8.26)

As explained in Section 8.2, a signal constellation and consequently a trans-
mission rate is assigned to each predicted SNR region boundary. Therefore,
for a given number of signal constellations, the optimum predicted SNR re-
gion boundary for each constellation corresponds to the optimum transmis-
sion rate, accordingly. Moreover, the transmit power can be obtained from
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the instantaneous predicted SNR based on (8.25). Therefore, the optimiza-
tion problem can be simplified to finding only the optimal region boundaries.
The Lagrangian function is given by

J(γ̂0, γ̂1, · · · , γ̂N−1) =
N−1∑
i=0

ki

∫ γ̂i+1

γ̂i

fγ̂(γ̂)dγ̂ + λ
(N−1∑
i=0

∫ γ̂i+1

γ̂i

g(γ̂,Mi)fγ̂(γ̂)dγ̂ − S̄
)

(8.27)

where the optimal region boundaries are found by solving
∂J

∂γ̂i
= 0, 0 ≤ i ≤ N − 1 (8.28)

which results in

g(γ̂i,Mi−1)− g(γ̂i,Mi) = −ki−1 − ki
λ

(8.29)

where k−1 = 0 and M−1 = 1 are assumed. Taking into account (8.25) and
(8.29), the optimum region boundaries are obtained by

γ̂i = ln
(
Pb
0.2

)(
S̄

1.6
Mi−1 −Mi

ki−1 − ki
λ− γ̄νhεc

)
(8.30)

where the Lagrangian multiplier λ 6= 0 is numerically evaluated based on
the power constraint given as

S̄ ≥
N−1∑
i=0

∫ γ̂i+1

γ̂i

g(γ̂,Mi)fγ̂(γ̂)dγ̂ =

ρ exp
(

νhεc
1− νhεc

(
1 + ln

(
Pb
0.2

)))N−2∑
i=0

(Mi − 1) (Ei(ρλPi)− Ei(ρλPi+1)) +

(MN−1 − 1)Ei(ρλPN−1) (8.31)

where

ρ = ln
(
Pb
0.2

)
S̄

1.6
1

γ̄(1− νhεc)
, Pi =

Mi−1 −Mi

ki−1 − ki
(8.32)

and Ei(·) is the Exponential Integral given by
∫

(ex/x)dx = Ei(x). When the
optimal region boundaries are determined, the maximum spectral efficiency
is evaluated through (8.10) and (8.18) as

ηB =
N−1∑
i=0

ki

[
exp

(
− max(γ̄νhεc, γ̂i)− γ̄νhεc

γ̄(1− νhεc)
)

− exp
(
− max(γ̄νhεc, γ̂i+1)− γ̄νhεc

γ̄(1 − νhεc)
)]
.

(8.33)
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Figure 8.3: Optimum normalized transmit power versus instantaneous pre-
dicted SNR of M-QAM schemes for γ̄ = 30 dB. The upper and lower plots
correspond to Pb = 10−3 and 10−7, and the solid, dashed and dashed-dotted
lines correspond to σ2

εp = 0.001, 0.01, and 0.1, respectively.

8.6 Results

We assume six different M-QAM signal constellations corresponding to 4-
QAM, 16-QAM, 64-QAM, 256-QAM, 1024-QAM and 4096-QAM, are avail-
able at the transmitter. Also, a flat Rayleigh fading channel with σ2

h = 1
is presumed. The optimal region boundaries for the cases where the re-
quired instantaneous BERs are 10−3 and 10−7 and the average received
SNR γ̄ = 30 dB are evaluated and shown in Figure 8.3, for the prediction
error variances σ2

εp = 0.001, 0.01 and 0.1 respectively (that is the prediction
NMSE are 0, 0005, 0, 005 and 0, 05). It is observed that the optimal region
boundaries are increased when the prediction error increases, as expected.
The maximum spectral efficiency for Pb = 10−3 and 10−7 and σ2

εp = 0.001,
0.01 and 0.1 are illustrated in Figure 8.4. The curves show that the gain in
the spectral efficiency using good predictors is considerable as compared to
the poor predictors. The reduction in spectral efficiency with an increasing
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Figure 8.4: M-QAM Spectral efficiency versus average received SNR for
Pb = 10−3 and 10−7. The solid, dashed and dashed-dotted lines correspond
to σ2

εp = 0.001, 0.01 and 0.1, respectively.

prediction inaccuracy becomes larger when the required BER is decreased.
Compare Pb = 10−7 to Pb = 10−3 in Figure 8.4.

The lowest predicted SNR at which the system transmits increases with
increasing prediction NMSE. This is due to that the relative uncertainty is
higher in the fading dips as seen in Section 7.4.3. A large portion of the time
this single user system will not transmit. It is thus ideal to combine the op-
timized adaptive modulation with a multiuser diversity scheme, scheduling
the radio resources between the users.

8.7 Conclusion

The optimum design of an adaptive modulation scheme based on M-QAM
modulation has been investigated. The transmitter adjusts the transmission
rate and power based on the predicted SNR to maximize the spectral effi-
ciency while satisfying the instantaneous BER and average transmit power
constraints. The instantaneous BER as a function of predicted SNR, average
SNR and predicted error variance has been evaluated. Optimum solutions
for the adaptive rate and transmit power were derived.
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The analytical results show that:

• The predicted SNR boundaries for a given constellation size are in-
creased when the prediction error increases.

• The spectral efficiency decreases as the variance for the prediction
error increases and (or) the required BER decreases.

• The loss in spectral efficiency can be significantly reduced by using a
good predictor.

• The difference in spectral efficiency for different prediction error vari-
ances decreases when the BER requirement is made less tight.

A combination with a multiuser diversity scheme would be very bene-
ficial especially when the prediction NMSE is quite high as then the link
adaptation avoids transmission at low predicted SNR and leaves the radio
resource open.
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8.A Pdfs for the Predicted SNR

The pdf for the predicted SNR and the conditional pdf for the true SNR
conditioned on the predicted SNR are needed to solve the optimization prob-
lem for the rate regions and the power. In Section 7.4.1 the corresponding
distributions for the true and predicted power are derive for a flat Rayleigh
fading channel. These expressions will be used to obtain the pdfs for the
SNR.

8.A.1 The pdf for the predicted SNR

For a flat Rayleigh fading channel the distribution of the predicted power,
using the unbiased quadratic predictor (7.17), is given by (7.39) as

fp̂(p̂(t + L|t)) =
U
(
p̂(t+L|t)−σ2

εc

)
σ2
h − σ2

εc

exp
(
−
p̂(t+ L|t)−σ2

εc

σ2
h − σ2

εc

)
, (8.34)

where σ2
εc is the variance for the complex channel prediction error. The

predicted SNR is obtained from the predicted power as (8.4)

γ̂(t|t− L) = γ̄
p̂(t|t− L)

σ2
h

. (8.35)

For notational convenience the time dependence is dropped in the following.
The Jacobian for the transformation from predicted power to predicted SNR
is

dγ̂

dp̂
=

γ̄

σ2
h

(8.36)

The pdf for the predicted SNR is then obtains from (8.34) as

fγ̂(γ̂) =
fp̂(γ̂σ2

h/γ̄)∣∣∣dγ̂dp̂ ∣∣∣ =
σ2
h

γ̄

U
(
(σ2
hγ̂/γ̄)− σ2

εc

)
σ2
h − σ2

εc

exp
(
−

(σ2
hγ̂/γ̄)−σ2

εc

σ2
h − σ2

εc

)
. (8.37)

Let the ratio between the variance for the complex channel prediction error
and the variance of the channel be denoted

νhεc =
σ2
εc

σ2
h

. (8.38)

The pdf for the predicted power can thus be obtained as

fγ̂(γ̂) =
U(γ̂ − γ̄νhεc)
γ̄(1− νhεc)

exp
(
− γ̂ − γ̄νhεc
γ̄(1− νhεc)

)
. (8.39)
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8.A.2 The conditional pdf for true and predicted SNR

The condition pdf for the true power conditioned on the predicted power is
obtain in (7.46) as

fpp̂(p|p̂) =
U(p)U(p̂−σ2

εc)
σ2
εc

exp
(
−
p+ p̂− σ2

εc

σ2
εc

)
I0

(
2
σ2
εc

√
p(p̂−σ2

εc)
)
. (8.40)

Here p̂ is not seen as a stochastic variable and can thus be substituted
by γ̂σ2

h/γ̄ without changing the cfpd. The normalization of (8.40) is only
performed with respect to p = γσ2

h/γ̄ as

fγγ̂(γ|γ̂) =
1∣∣∣dγdp ∣∣∣fpp̂(γσ2

h/γ̄|γ̂σ2
h/γ̄)

=
U
(
γσ2
h
γ̄

)
U
(
γ̂σ2
h
γ̄ −σ2

εc

)
γ̄σ2

εc/σ
2
h

exp

− γσ2
h
γ̄ + γ̂σ2

h
γ̄ −σ2

εc

σ2
εc

 I0

 2
σ2
εc

√
γσ2

h

γ̄

(
γ̂σ2

h

γ̄
− σ2

εc

)
=

U(γ)U(γ̂−γ̄νhεc)
γ̄νhεc

exp
(
−γ + γ̂ − γ̄νhεc

γ̄νhεc

)
I0

(
2

γ̄νhεc

√
γ(γ̂−γ̄νhεc)

)
.

(8.41)



Chapter 9

Concluding Remarks

9.1 Channel Models

The understanding of the mobile radio channel and the process behind the
small scale fading is crucial for success in designing predictors. The lin-
earized model where the tap in a mobile radio channel is described as a sum
of weighted complex sinusoids seem to suggest that the tap should be easy to
predict. The changing angles to the reflectors and scatterers that contribute
to the multipath result in an adjusted model where the frequencies drift.
How fast the frequencies drift depend on the distances and angles towards
the secondary sources. This is an important effect if there are strong scat-
terers close to the transceiver and it will limit the performance of a predictor
based on the sinusoidal model.

The assumption of perfect distant reflectors can be questioned. When a
building or a group of objects act as a cluster of scatterers the corresponding
contribution to the channel can be described as a narrowband filtered Gaus-
sian noise. There is a mapping from the geometrical distribution of a cluster
to the angular distribution of power around the receiver. The correlation
function of the contribution to the channel of a distant cluster is a damped
(not necessarily exponentially damped) complex sinusoid.

A Cauchy like distributed cluster of scatters result in a sharp peak in the
angular distribution. The contribution of such a cluster to the channel can
be modeled as an AR1-process. When a number of clusters contribute to the
channel a suitable model is given by an ARMA-process. The properties of
this ARMA-process, and the noise it is observed in, limits the performance
of the channel predictor. A linear predictor is suitable for prediction of such
processes.

231
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9.2 Channel Estimation Error

In a block based LS-estimation the channel is estimated using received sym-
bols at baseband sample rate. The channel estimation error is both due
to measurement noise and the channel variation during the estimation in-
terval. The error that is caused by the time variation can be decomposed
in two uncorrelated errors: The excess error due to the weighted averaging
of the channel and the bias error due to the curvature of the channel. For
a channel described by the Jakes model these two errors are uncorrelated.
The variance of the error due to the time variation within the estimation
interval can be parameterized using the time-frequency product (the length
of the estimation interval measured in wavelengths) and the number of sam-
ples used for identification. When the time-frequency product is small, the
error due to the time variation will also be small. The estimation error due
to the measurement noise is proportional to the inverse of the number of of
samples used for identification. Instead of increasing the estimation interval
to average away the measurement noise, better channel estimates can be ob-
tained by filtering of the channel estimates obtained from short estimation
intervals.

The variance for the estimation error forms a noise floor in the power
delay profile or the average Doppler spectrum of the estimated channels.

9.3 Noise Reduction on Estimated Channels

Exploiting simple models of the dynamics of the channel noise reduction us-
ing Wiener-smoothers can be performed on the estimated channels. When
evaluated on simulated Jakes channels an IIR smoother based on a Cheby-
shev type one low-pass filter of degree 4 achieves a smoothing MSE similar to
that of an optimal FIR-smoother with 128 coefficients designed for the Jakes
channel. The interpolation problem is thus not that sensitive to the choice
of model dynamics as long as it has the appropriate low-pass structure.

The IIR smoothers are numerically sensitive to errors on the coefficients
when the model filters are very narrowband (that is at oversampling ratios
above 50). The FIR-smoothers are not numerically sensitive but need on
the order of 100 coefficients. The FIR smoother should have a memory that
cover at least one wavelength of traveled distance.

When sub-sampled predictors are used the noise reduction acts as the
necessary anti-aliasing filter.
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9.4 Channel Tap Prediction

The deployment of noise reduction on the observed taps of a channel reduces
the number of predictor coefficients that has to be estimated from the obser-
vations. For a tap described by a Jakes model the increase in performance
when going from 8 to 32 coefficients in the predictor is insignificant if noise
reduction has been applied in a first step.

The performance of a direct FIR-predictor depends on the delay spacing.
A robust choice of the delay spacing is about a tenth of a wavelength for a
predictor with 8 to 32 coefficients.

The estimated AR and ARMA-models indicate that there is more signal
power at high frequencies than there actually is. This is due to the estima-
tion errors. This is compensated for in the design of the Kalman predictor,
where a noise model with pronounced power at higher frequencies is used.
This reduces the amplification at these frequencies.

Evaluation on measured channels

On measured taps the direct sub-sampled FIR-predictor that is designed
to minimize the prediction error for a given range has roughly the same
performance as a Kalman predictor using a sub-sampled AR model for the
dynamics.

The performance is highly dependent on the variance of the channel
estimation error but it also depends on the dynamics of the individual taps.
Taps with a low Doppler spread are generally more predictable than taps
with high Doppler spread.

9.5 Power Prediction

The power prediction is obtained as the squared magnitude of the complex
prediction of a tap, together with a bias compensation. A prediction of the
total power is obtained as the sum of the predicted powers for the taps.

Evaluation on measured channels

The NMSE of the power prediction of the individual taps is on average
quite close to that of a tap described by the Jakes model. For prediction
ranges above 0.3 wavelengths the observed performance is actually better
than on the Jakes model. Just as for the complex tap predictions the per-
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formance depends both on the variance of the channel estimation error and
the dynamics of the tap.

For power control the total power of the communication link is adjusted.
When prediction is not applied the last available observation of the power is
signaled back to the base station. The power control is then performed on
outdated information. For the total power the proposed unbiased quadratic
predictor using 8 coefficients and smoothed regressors clearly outperforms
the last observed power sample as predictor. Up to a range of 0.2 wave-
lengths the proposed predictor is ten times better than the last observed
power sample as predictor. Up to a quarter of a wavelength the predic-
tion NMSE is below 0.01, as compared to the last sample predictor that for
such a long range is close to the average power as predictor in performance.
At a carrier frequency of 1880 MHz, 0.2 wavelengths is 32 mm of traveled
distance, which at a vehicle speed of 50 km/h corresponds to 2 ms.

9.6 Link Adaptation

As a final example of an application of the power predictor and the theory
developed in Chapter 7, a system with link adaptation is described. The
proposed system utilizes the unbiased quadratic predictor and maximizes
the spectral efficiency while satisfying a certain BER requirement.

The modulation is chosen depending on the the predicted SNR. The
region boundaries for the predicted SNR where the modulation is changed
is highly dependent on the power prediction NMSE. A combination with a
multiuser diversity scheme would be very beneficial especially when the pre-
diction NMSE is quite high as then the link adaptation avoids transmission
at low predicted SNR and leaves the radio resource open.

The taps of the measured channel can give an indication of how pre-
dictable a flat fading channel could be. The power prediction NMSE is
assumed to be 0.0005, 0.005 and 0.05 in Figure 8.3 and Figure 8.4. Fig-
ure 7.17 summarizes the power prediction NMSE for the measured taps for
different ranges and signal-to-estimation error ratios. An NMSE of 0.0005
is not achieved at any range and 0.005 is achieved only for the taps with a
signal-to-estimation-error ratio in the range 32 to 38 dB for a range of less
than 0.15 wavelengths. A power prediction NMSE of 0.05 can be achieved
for ranges up to a quarter of a wavelength when the signal-to-estimation-
error ratio is above 20 dB. For a range of 0.1 wavelengths it is achieved
already for 8 dB. If the signaling in the feedback path to the base station is
fast enough, it is feasible to deploy this type of link adaptation.
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9.7 The Predictor Design

• Estimate the channel with the uttermost care. All estimation errors
result in degraded performance of the predictor.

• Use Wiener-smoothers on the estimated taps to reduce the estimation
error in a separate step.

• Estimate a sub-sampled AR-model for the dynamics of the taps. Al-
ternatively, estimate the coefficients of a direct FIR-predictor, using
smoothed regressors. A delay spacing of about a tenth of a wavelength
is appropriate.

• Keep the number of estimated coefficients low, as estimation errors
reduce the prediction performance.

• Design a Kalman predictor based on the estimated AR-model and a
noise model that emphasizes high frequencies to compensate for the
estimation errors in the AR-model.

• Power prediction is obtained as the squared magnitude of the complex
prediction with an added bias compensation.

9.8 Topics for Future Research

The problem is to design robust prediction algorithms that can cope with
both sudden and gradual changes of the impulse response and the underly-
ing statistics. Algorithms for both the time and the frequency domain are
needed to cover the large span of applications. The use of channel prediction
in antenna array systems must be given special attention. There is a large
potential for adaptive MIMO systems facilitated by channel prediction.

The algorithms must have low complexity as the time constraints are
rigid and the computing power in a mobile terminal is limited. The time
used for calculation must be compensated for by a correspondingly longer
prediction range.

Next we give some directions and recommendations for future research:

• Study the performance and complexity of predictions in the time do-
main mapped to the frequency domain. The high temporal resolution
in the channel impulse response causes each tap to contain contri-
butions from a lower number of paths, and thus makes them more
predictable. Predictions in the time domain can then be mapped to
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the frequency domain where it can be used for link adaptation in an
OFDM like system.

• Develop descriptions of how the statistics of the channel changes over
time. How long time intervals the models for the dynamics of a channel
are valid is of great importance to the prediction performance. It also
governs how long the estimation intervals can be.

• Develop robust adaptive channel prediction algorithms. When the dy-
namics of the channel changes gradually, adaptive methods can be
used to obtain continuous updates of the models or prediction coeffi-
cients [27]. Block based methods can be seen as a special case of the
adaptive methods, as the models are frequently re-estimated.

• Merge channel prediction with antenna array systems. The combina-
tion of these techniques can give adaptive beam forming that do not
suffer from outdated channel estimates [57].

• Derive performance limits for different types of environments. The
predictability of the channel will differ depending on the type of envi-
ronment.

• Closer integration with the applications. Not all applications that use
channel predictions have the same performance criteria. The predic-
tion algorithms should be tailored to the specific needs of the applica-
tion.



Appendix A

Visualized Channels

To further understand the mobile radio channel, visualization of a number of
different aspects of the measured impulse responses is of great importance.
In the following the estimated channels from three different measurements
will be described and the following properties will be illustrated.

Received power
The total received power changes as a function of time. When the power
decreases rapidly, this is called a fade. The received power depends on the
channel as

p(t) =
∑
k

|hk(t)|2. (A.1)

Frequency response
The instantaneous value of the time-varying channel has a frequency re-
sponse. That is a discretized version of the frequency responses in equation
(2.23). The fading is thus frequency selective. A fade in the received power
corresponds to a situation with many frequencies or taps fading simultane-
ously.

H(ω, t) = Fk{hk(t)}. (A.2)

Power delay profile
The power delay profile is the power as a function of the delay k of the
impulse response, averaged over the time t for a time-varying response,

P (k) =
1
N

∑
t

|hk(t)|2, (A.3)
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where N is the number of observations. The power delay profile shows
how the received power is distributed over the delays. A peak in the PDP
corresponds to a path with the corresponding delay k.

Doppler spectra
The Fourier transform of the complex taps described in equation (2.25) gives
the Doppler shift for the different contributing rays.

Hk(Ω) = Ft{hk(t)} (A.4)

The Doppler spectrum thus shows the frequency distribution of the oscilla-
tions of the individual taps. It is plotted as a power spectrum, |Hk(Ω)|2. To
increase the resolution, a MASC spectral estimator [54] is used instead of
the Fourier transform. The Doppler spectrum gives information about the
direction of the incident waves. A peak in the Doppler spectrum close to
fD corresponds to a wave coming from the direction of motion. In the same
way a peak close to −fD is a wave coming from behind the vehicle. Waves
from the side correspond to peaks close to 0 Hz.

The key features of the three exemplified channels are listed in Table A.1.

A B C
Velocity [m/s] 25 14 10
Delay spread [µs] 0.4 0.3 0.8
Doppler spread [Hz] 56 43 35
3 dB coherence bandwidth [Hz] 4.9 2.3 0.6

Table A.1: Table of the key features for the displayed channels.
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Channel A
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Figure A.1: The fading pattern of channel A changes a lot over time.
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Figure A.2: Frequency response |H(ω, t)| of the estimated channel A. Dark
coloring denotes fades. The dynamic range (black-white) is 40 dB. All
frequencies fade simultaneously due to that mainly one tap contributes to
the power.
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Figure A.3: The average frequency response of channel A is almost flat.

5 10 15
−110

−100

−90

−80

−70

−60

−50

Delay [µs]

R
el

at
iv

e 
po

w
er

 [d
B

]

PDP

Measured     
Noise reduced
Noise floor  

Figure A.4: The PDP of channel A shows that the power comes mainly
from one tap. The noise floor is the power of the estimation error.
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Figure A.5: The Doppler spectra for all the taps of channel A.
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Figure A.6: Average Doppler spectrum of channel A. The strongest wave-
fronts come from the side as there are peaks close to 0 Hz. Note the small
but significant power at frequencies above the Doppler frequency.
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Channel B
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Figure A.7: The the estimated power of channel B. The power decrease
when performing noise reduction.
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Figure A.8: Frequency response |H(ω, t)| of the estimated channel B. Dark
coloring denotes fades and the dynamic range (black-white) is 40 dB.
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Figure A.9: The average frequency response of channel B is not flat. Noise
reduction modifies the estimated frequency response especially at frequen-
cies close to the band-limit.
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Figure A.10: The PDP of channel B shows that the power mainly comes
from a few taps. Noise reduction is very efficient on this channel.
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Figure A.11: The Doppler spectra for all the taps of channel B.
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Figure A.12: Average Doppler spectrum of channel B. The strongest wave-
fronts come from the front.
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Channel C
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Figure A.13: The fades are not so deep in channel C due to the large delay
spread.
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Figure A.14: Frequency response |H(ω, t)| of the estimated channel. Dark
coloring denotes fades and the dynamic range (black-white) is 40 dB. The
coherence bandwidth is small as the frequencies fade almost independent of
each other.
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Figure A.15: The average frequency response of channel C.
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Figure A.16: The PDP of channel C shows that many taps contribute to
the total power.
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Figure A.17: The Doppler spectra for all the taps of channel C.
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Figure A.18: Average Doppler spectrum of channel C.
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