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/ ‘ Time-Varying Linear Regression Models I

Yy = @ hy + vy

Complex-valued and possibly MIMO, with ©; known at time ¢.

Example: Mobil radio channel

[ hoy )

Yy = (’U,t. . .ut_M_|_1) - —|—Ut

oy

Qur goal: Estimate vector /; when R = E (p;}) is known.

~
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‘The LMS Stepsize Dilemmal
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‘Tracking Algorithmsl

Time-varying Kalman Filter (time varying gain)
RLS with exponential forgetting (time varying gain)
LMS and LMS-Newton (time invariant gain)

General Constant Gain Algorithms (NEW)  (time invariant gain)

+ Structure and tuning can be tailored to ARIMA-type time-variations
+ Low complexity
+ Performance close to Kalman

- At present restricted to slowly time-varying R = E (107 ).

~
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‘Tracking Performance Example 1: I

LMS tracking
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‘Tracking Performance Example 2: I

Tracking MSE for complex two-tap fast fading (second order AR):

~

Input (symbol) properties Kalman WLMS LMS RLS

White and constant modulus: 0.011 0.011 0.020 0.026

White and Gaussian: 0.012 0.015 0.032 0.038

Colored Gaussian (A naz/Amin = 10) : 0.026 0.038 0.085 0.075
Real add+mult/sample for white inputs: 214 30 18 72
For colored inputs (R # cI): 214 44 18 72

N

Tracking MSE can for WLMS and LMS be predicted exactly for
2-tap FIR and well approximated for higher order FIR models.

/
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‘ Outline of Presentation: |

e Structure of the tracking algorithms

1. Design:

e Wiener design
e Simplified algorithms.

e |terative design.

2. Analysis:
e Slow variations

e Fast variations.

3. D-AMPS 1900 Channel Tracking

4. Summary
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/ ‘ Exploiting Prior Information I

“Known” time-variability will improve tracking.

Model: hy = H(g e, for example

Cuy  _Ltag™ 4.+ g™

h, = —
"T DY 14digt . +dy, g

I@t

Examples: Let C(¢g™') =1

Random Walk: DgYHhy=1—q!
Filtered Random Walk: D" = (1 — ag™*)(1 — ¢~ )

Quasi Periodic (AR2): D) =1 — 2pcoswyq™! + p?q~2

N

~
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/ ‘ Kalman Estimators: |

Model:
Tiy1 = Fxy+ Gegyq (assumed parameter dynamics)
hsy = Huxy
ye = wihy+ v = @ Hx 4+ vy (linear regression)
The Kalman estimator for scalar 1, is
& = Yt — @:ﬁﬂt—l
Tye = FZy_1pp—1 + Kepeey ; K¢ = Pt|t—1H*/0§,t
hoyre = HFEZy, k>0 .

It can be expressed as a time-varying linear filtering of p;&;:

N

iLt—l—k|t = Mk,t(q_l)sptf‘?t :

~
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/ ‘The General Constant Gain Structure: |

Linear time-invariant filtering of the instantaneous gradient ©;&;:
& = Yt — @:hﬂt—l
iLt—l—k|t = My s

where M (') is optimized based on the model

hi = Hg Ne: ; Eeef =R, “hypermodel
to minimize
A . 7 7 % 7 A /
Pk = tligltht—i‘kﬁht—l—klt , where ht_|_]<;|t — ht—l—k - ht—l—k|t .

(LMS: M (¢ = —£—1)

\ 1—q

~

10
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/ Ptet o (Ys — @:ilﬂt—l) = SOtSO:Bt|t—1 T Pt \

iLt_|_1|t — Ml(q_l)gptst (one-step predictor)

Can be seen as a time-invariant regulator for a time-varying system:

I PtUt
hijt—1

€¢ ht

— H "?"Sot@:*é}’ M

Add+subtract RiLﬂt_lZ PtEr — R(ht — ht|t—1) + (QOtQOZk — R)ﬁﬂt—l + QY Us.
Define = oty — R . Then, ...

hips *
s R = E (pt07)

Y
K
|
-
-

riéﬁhﬁﬁé?ﬂ}Eé1
v —1

, Pt t <pt€tL1(q ) Iﬁ

€¢ t

|

g 'R I

_______ N

g '«
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/ ‘The Learning Filter: I

We design a stable rational matrix L(¢") that estimates hyj
for any £, by operating on the “fictitous measuement” f;:

Jt = Rilt|t—1 + pier = Rhy + 1
iLt—|—l<:|t = Lra " fe .
Nt

et hy [t hen)e
—  H > R L >
1 Ptk _/L Bt-l—khi

" 4 -O—

Ny = Ztﬁﬂt_l + ¢ U4 “gradient noise”
N——

\ “feedback noise”

~

12
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PrUt LEARNING FILTER
e ht ft ht 1(¢
i« H -~ R o L ull
iLt|t 1
— —1
q

e Stability by Small gain theorem whenever

la™ L1 Zihgs—1llp < Vlhe—allp 3 Y< 1.

The feedback loop can then be neglected.

e In other cases, we assume a low correlation (true for white FIR regressors).

\o Then, an iterative open-loop Wiener design can be performed.

/ ‘The Feedback Effect on the Gradient Noisel \

Zy = prp; — R

e For “slow variations” (see below), 00} hyj—1 ~ Rhyji—1,80 Zihyi—1 = 0.

/

13
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‘ Insignificant Feedback Noise <= Slow Variations I

Degree of nonstationarity (Macchi):

E[|o;(ht — he—1)]]3
E [v]2

(1)

We define regression parameters as slowly time-varying when the feedback noise
Ztht|t_1 can be neglected in an optimal MSE design without affecting the tracking

error covariances significantly.

Lemma : Let the learning filter £;(qg~") be obtained by the Wiener design

equations. If H(z~') is stable or marginally stable, then the relative impact of the

feedback noise on the resulting true error will tend to zero as (1) vanishes.

N /

14
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‘ Assumptions for the Wiener Design: I \

. Regressors j are stationary and known at ¢ and R is known.

. The gradient noise is decribed by a known and stable vector-ARMA model:

1

N(q_l)M(q_l)Vt :

Tt —

. Innovation sequence v is uncorrelated with h;_; and with hy_;;_; 1,7 > 0

. We assume
hy =M e, =DM ' Cg e

where e; is white, with E e; = 0 and E [e;ef] = R is nonsingular.

Dgq" = Dug"HDgsq " ; D, polynomial with zeros on|z| = 1

|+ Dig 1+ ... D,,q P (Marginally stable)

|+ Cig '+ ...Cphq " (Stable) /

Aug. 2001
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‘Wiener Design of the Learning Filter: I

Under Assumptions 1-4, the stable and causal learning filter minimizing P, is

c? = D7'Q,8'ND R,

given by the spectral factorization

B3, =CR.C . NN, +DR'MM.R'D, |,
d the bilateral Diophantine equation

¢"CR.C N, =Q,B,+qD L. .

(Here X, denote conjugated matrices in ¢ ). The solution is unique.

The error ht+k|t is stationary, with finite covariance matrix and zero mean.

iLt—{—k|t — Mk(q_l)spté?t = D 3_1Qk [ﬁ — q_lNQ1]_1 ND sR_lsf?tf‘?t

~

16



/ ‘Wiener LMS (WLMS): I

np—

L : 1 3
We may minimize tr Py, = lim; oo E D> . "0 " |hit4k — hi,t+k|t|2

for diagonal hypermodels with equal elements

C™
ht = — I €t
D™
with a structurally constrained learning filter

- Qria™ g
ht—l—k|t — mR 1ft .

A
If 17; is white with covariance R, andy = trR./trR™'R, R}, solve

rBB., = ~CC,+ DD,
quCC* = rQrBs +qDLy. .

Aug. 2001

~

\For random walk models and white regressors (R = cI), WLMS reduces to LMS./

17
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/ ‘ Realization of Constant Gain Algorithms: I \

Pt
_1 _ A
Yt €t R™f: €¢ ht+k:|t

> R ! >O—— B 'ND, D 'Q,

—A A

Y

A

Pt
ilt|t—1 — —
é< q 1D3 1Q1

Numerically well-behaved. All blocks are internally stable.

(Low complexity computation of R_lgpf when regressors are autoregressive:
\See Farhang-Boroujeny, IEEE SP pp1987-2000 1997.) /

18
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‘ Iterative Design I

1. Assume 71y = ;U (slow variations) and design L.

2. Estimate covariance matrix of the gradient noise 7); by theory or simulation.

3. Re-design L if required. Otherwise, obtain the desired L.

10° ¢

TRACKING MSE
o

1072
;

TWO RECEIVERS, TWO MOBILE USERS, TWO TAPS

GCG

1 KALMAN

1 GCGo

GCG

KALMAN

15 20 25 30

Example: MIMO D-AMPS with
one fast mobile (225km/h)
and one slow (45km/h)

in upper curves.

Dashed curves: iteration 1
(assuming slow variations).

Solid: after iterations.

Aug. 2001

~
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0.02

0.015¢

0.01f

CORRELATION

0.005f

‘Iterative Design Example: Correlationsl

Example: MIMO D-AMPS

Solid: E (n:h} ., )

(Small for 7 < 0).
Dash-dotted: E (17:1/, )
Dotted:

1D (}NLt|t_1B;fk—|—T|t—|—T—1)

~

20
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/ ‘Iterative Design Example: Performancel \

SNR Wo,2d" Kaim. GCG WLMS RLS LMS

10 0.10 0477 0516 1.045 143 158
30 0.10 0.093 0.142 0.488 0.82 1.00
10 0.02 0.170 0.179 0.247 033 0.413
30 0.02 0.013 0.017 0.028 0.077 0.115

# real. mult. | 5440 416 272 1564 132

Tracking of 8 parameters. Second order oscillative hypermodels, known and diagonal.
R. is 2 x 2 block diagonal.

4-step predictors are calculated. (one-step predictions used in RLS and LMS).
Kalman predictors estimate 16 complex-valued states. /

21
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/ ‘Iterative Design Example: Modellingl
ye \ _ [ Bi'@™) Bi*(¢h up N vy
vi B¢~ B*@™h uy Vi

where y% is the sampled baseband signal at receiver 7. Two-tap channels:

sz(q_l) = bé{t + bi{tq_l-

. uy ui_, ui ur_; O 0 0 0
0 0 0 0 utl u%_l Uy Ur_q

11 ;11 312 ;12 ;21 ;21 ;22 ;22 \T 1 29T .
he = (boy biy bo bie boe b1 boy by )™ 5 ve = |vy vi]" white.

{u!} are white complex-valued QPSK symbols with R = I.
Fading model D (¢~ *)h; = e;, where R, is 2 x 2 block diagonal.

D (g Y =diag[ D11(¢7") D12(g™") D21(g™") Daa(g™)]
\ Dij(q") = [1 —2pcos(wo, i T/V2)q 4 p'q "Lz

~

/
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/ \ Outline of Presentation: |

1. Design (Seminar 1):
e Structure of the tracking algorithms
e Wiener design
e Simplified algorithms.

e lterative design.

2. Analysis:
e Slow variations

e Fast variations.

3. D-AMPS 1900 Channel Tracking

\4. Summary

~

24
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/ ‘ Time-Varying Linear Regression Models I

Yy = @ hy + vy

Complex-valued and possibly MIMO, with ©; known at time ¢.

Example: Mobil radio channel

[ hoy )

Yy = (’U,t. . .ut_M_|_1) - —|—Ut

oy

Qur goal: Estimate vector /; when R = E (p;}) is known.

~

25
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/‘ Approaches to analysis of Adaptation Algorithms: I\

Yy = @ h + vy System
g = Yp — gpfﬁtﬁ_l Prediction error
iLt+1|t = f(&y) Adaptation Law

1. Time-varying systems, products of matrices
Ewada and Macchi (Automatica 1985, AC 1986), Farden (ASSP 1981),

Guo and Ljung (AC 1995), Moustakides (IJACSP 1998).

2. Slowly varying parameters and low adaptation gain

Benveniste et.al. 1990, Kushner and Shwartz (IT 1984), Haykin 1996, Macchi 1995.

w

. Independent consecutive regression vectors

\ Widrow et al (Proc. IEEE 1976, IT 1984), Gardner (1984, 1987) Haykin 1996. /

26
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/ ‘The General Constant Gain Structure: |

Linear time-invariant filtering of the instantaneous gradient ©;&;:
& = Yt — @:hﬂt—l
iLt—l—k|t = My s

where M (') is optimized based on the model

hi = Hg Ne: ; Eeef =R, “hypermodel
to minimize
A . 7 7 % 7 A /
Pk = tligltht—i‘kﬁht—l—klt , where ht_|_]<;|t — ht—l—k - ht—l—k|t .

(LMS: M (¢ = —£—1)

\ 1—q

~

27
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/ Ptet o (Ys — @:ilﬂt—l) = SOtSO:Bt|t—1 T Pt \

iLt_|_1|t — Ml(q_l)gptst (one-step predictor)

Can be seen as a time-invariant regulator for a time-varying system:

I PtUt
hijt—1

€¢ ht

— H "?"Sot@:*é}’ M

Add+subtract RiLﬂt_lZ PtEr — R(ht — ht|t—1) + (QOtQOZk — R)ﬁﬂt—l + QY Us.
Define = oty — R . Then, ...

hips *
s R = E (pt07)

Y
K
|
-
-

riéﬁhﬁﬁé?ﬂ}Eé1
v —1

, Pt t <pt€tL1(q ) Iﬁ

€¢ t

|

g 'R I

_______ N

g '«
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/ ‘The Learning Filter: I

We design a stable rational matrix L(¢") that estimates hyj
for any £, by operating on the “fictitous measuement” f;:

Jt = Rilt|t—1 + pier = Rhy + 1
iLt—|—l<:|t = Lra " fe .
Nt

et hy [t hen)e
—  H > R L >
1 Ptk _/L Bt-l—khi

" 4 -O—

Ny = Ztﬁﬂt_l + ¢ U4 “gradient noise”
N——

\ “feedback noise”

~

29



Aug. 2001

-~

e When can the feedback loop be neglected?
e How to quantify feedback effects?

® Less conservative stability conditions than Small gain theorem?

N

‘Analysis of Adaptation Laws with Constant Gains I

PtV

LEARNING FILTER

Y

L;

heyae

A

~

Zy = prp; — R

/

30



Aug. 2001

‘ Basic Assumtions of our Analysis I

Assumption 1:

® The noise v; is stationary and zero mean

e The regressor matrix ¢ is stationary with zero first and third order moments

and finite higher order moments.
e The parameter model H.(g~ ') is stable or marginally stable.
® The parameter innovations e; are stationary, white and zero mean.

® ¢, Uy, and gp;f are mutually independent with bounded covariance matrices

RéEgthOI : ReéEete;&k ) RvéEth:

respectively, with R being nonsingular.

31
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‘The Estimation Errorl

m = ZtBt|t—1 + ptU
€t ht ft ht—i—k:|t
— H » R Ly >
. ht_|_k; - % Et—l—k:|t

iLt—l—k|t — EI - q_kﬁkR)ht+;3—€k¢tvE _Ek:ZtiLﬂt—l .

~"

Lag Error Noise Feedback Effects

Pk:tlifgo (Vht+vg0vt+vzht+ hth—I—v Zﬁ{)

~"

Cross-terms

~

/
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4 N
Slow Variations 1 |

Degree of nonstationarity (Macchi):

E |lof(ht — hee1)ll3
E |vg|?

(1)

We define regression parameters as slowly time-varying when the feedback noise
Ztht|t_1 can be neglected in an optimal MSE design without affecting the tracking

error covariances significantly.

Lemma : Let the learning filter £ (¢~ ") be obtained by the Wiener design
equations. Under Assumption 1, the relative impact of the feedback noise on the

resulting true error will then tend to zero as (1) vanishes.

N /
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/ ‘ Slow Variations 2 |

Analysis for slow variations now becomes simple!
Steady-state error covariances: (h; = (1/D)C e;).

P, = lim (Vi,t T Viv,t )

t— 00
1 CR.C dz
- — ¢ (I-2"FC.R cC~*(1-2°C..R) =
o) (I— 27" LyR) —pp— (I- 2 LpR) =
1 MR, M dz
T 1% *L Y, —
T o =N, L

Lag error gives finite contribution whenever

I-q¢*CR

\contains all marginally stable factors of D(g~1) in all numerators.

~

/
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/ ‘ Slow Variations: LMS | \

Stability and bounded estimation errors are for stable H (¢~ ') assured
by stability of the learning filter. For LMS,

(1 — q_l)ilt+1|t — HPtEr — M(ft — RiLt|t—1) =
iLt+1It = LigHfi=1—-(I- MR)q_l)_lﬂft
Let A\,.x De the largest eigenvalue of R. If R = UAU*,
hepae = U0 = (1= pA)g) U fy

Stability of L£1: The classical condition for convergence in the mean

2
0 < pu < —

" Y

35
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/ ‘ Slow Variations: Example. I \

Yr = hotus + h1tue—1 +v¢ 5 hy = 2pcoswehi—1 — p*hi_o + e

p = 0.999 Wo 0.001  0.005 0.01 0.02 0.10

DNS: (1) 0141  .0510 .1005 .2002 .9996
LMS: tr Py .0011 .0027 .0045 .0075 .0360
Measured: .0012 .0030 .0052 .0099 .0650

tI‘Vlzﬁ .0001 .0003 .0007 .0020 .0278

WIENER tr Py .0007 .0013 .0019 .0028 .0061
DESIGN: .0007 .0014 .0021 .0031 .0076

tI’Vlzﬁ .0000 .0001 .0002 .0003 .0015

36
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P. =

Lag error (solid) and the filtered noise (dashed), which equals 0.01|L1 (w)]

1
219

‘ Slow Variations: Example. I

CR.C

(I—z_kﬁkR>

dz 1

z 219

D * (I - zkﬁ.k*R>

SPECTRA OF THE LAG ERROR AND THE FILTERED NOISE

10°

10 ¢

LMS

POWER
I

10 7t

10

L LMS ]

10

07 107 0

NORMALIZED ANGULAR FREQUENCY

Qr Wiener estimators (WLMS) and for LMS, with w, = 0.01.

2

/
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Scalar FIR model with white inputs:

Yr = hotus + hy i1+ ...+ An—1,tUt—mt1 + Ut
Approximation 1:
tr B Z} Zyhyp1hiy_y = trE[ZXZ4E [hye_1hf 4] -

Approximation 2: Ztilt|t—1 is uncorrelated with ©.-v, and h,, VT.

(Independence between /; and iLt|t_1 would imply (2), but would be a much
stronger assumption. Under Approximation 2, the cross-terms are neglected.)
A WLMS tracking structure which gives a finite lag error is assumed:

_ (q_l) 1 = i,
Lrigl) = @ oY 1 = E L¥ig™" .
u 1=0

Blq

N

/ ‘FIR Models with Rapid Parameter Variations 1. I \

J

38
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/ ‘ FIR Models with Rapid Parameter Variations 2. I \

Result, under Assumption 1 and the above assumtions:
A finite steady state mean square parameter error exists if and only if

1

Gzt = = ~ (3)
L= moy Yo L2
Is stable, where
A E |’U/t‘4
m = +M — 2 (4)
(Bue?)?

K., Pearson kurtosis.
The k-step estimation error is then given by

tr Py = trVﬁ + terw + trvgh

N /
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where

in which

\Here 0

trV/f = HB )_q_:Qk ) hitk
K & :
trv,, = Méxk
trvy. = mtrPiY;
s, A 1 Qrz"H|* dz
2109 Jiz=1 | BETH | 2]
trvi 4 MZe %,
trP; = T mZi
= E|u?| and 02 = E|v?|.

/ ‘ FIR Models with Rapid Parameter Variations 3. I \

2

2

40
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/ ‘ LMS Examplel \

FIR system with

h: = 2pcoswyhi_1 — pzht_g +er ; w, =0.050, p=10.995.

Output SNR of 20 dB, with |/1;|2 = 1. Tracking MSE for two-tap system by theory
(solid) and by simulation (). Two-tap FIR systems with white real-valued binary (B)
and Gaussian (G) regressors. Dashed curve neglects the feedback noise.

0.2 G B
[

0.15H

MSE

0.1F |

0.05r °

O L L L L L L L L
\ 02 04 06 038 1 12 14 16
u
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‘Adaptive Channel Tracking in D-AMPSI

Viterbi — N
U
detector U,
N A
{yt} T | ht+k:|t
Adaptation of N
> <€4—O tr
parameters o {ut }
(Channel parameters)
» TWO TAPS OF EQUAL MAGNITUDE, 160Hz FADING
10 \ ‘
102 e ]
i} S
i
107
107 | ‘ =
15 20 25 30
SIR, dB

~
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‘ Summaryl

A novel formalism for analysis and design of adaptive algorithms for linear

regression models.

Level of design complexity and computational complexity is controlled by

selecting models for the parameters h; and the gradient noise 7.

The WLMS principle is standard in all D-AMPS 1900 handsets and base

stations by Ericsson. Will also be of use in EDGE.

FIR systems with white regressors can be analyzed under approximations that

are much milder than an assumption of independent regression vectors.

An exact tracking analysis for fast variations with colored regressors might

require considerably more complicated tools.

/
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